
DUO Control System

Introduction

The REV Control Hub is an affordable robotics controller providing a platform for the interfaces required for
building robots. The Control Hub works with the Expansion Hub and Driver Hub to create a complete
robotics control system for both the classroom and the competition. These devices are most commonly used
within the FIRST Tech Challenge (FTC), FIRST Global Challenge (FGC), and in the classroom for
educational purposes.

How to use this documentation?

This documentation is intended as the place to answer any questions related to the REV Robotics Control
Hub, Driver Hub, and Expansion Hub used in the FIRST Tech Challenge and FIRST Global Challenge.

Looking to get an idea of how to use the system before your Control Hub arrives? Reading
through each section will help, but we specifically recommend the guides on

 and the section.
getting started with the

Control Hub programming language options

Have a specific question? Feel free to head straight to it using the navigation bar to the left. Each
section is grouped with other topics that are similar.

Having trouble finding what you are looking for? Try the search bar in the upper right or read the
section descriptions below to find the best fit.

Getting started building robots can be an intimidating process. The following documentation is here to make
getting started a bit easier. There are a number of examples to get started with the Control System and we
are committed to adding content to make it more accessible for people to use REV.

If there is a question that is not answered by this space, send our support team an email;
support@revrobotics.com. We are happy to help point you in the right direction.

What is in each section?

‌System Overview

‌This section contains information regarding all of the major mechanical specifications of the REV
 and . These sections include information, , and the

 used with the devices.

Control
Hub Expansion Hub port pinout protection features types
of cables

Getting Started

Take the Control Hub or Expansion Hub from out of the box through generating the first configuration file.
This includes the process for changing your as well as

. Also includes information on ways to add additional motors to the control system through
adding a or an .

Control Hub's Name and Password connecting to
your Driver Hub

SPARKmini Motor Controller Expansion Hub

Updating and Managing

This section covers how the information needed to keep your Control Hub, Expansion Hub, and Driver Hub
up to date with the latest software. This section also includes information on using the REV Hardware Client
to update, program, and manage these devices as well.

Programming

From just getting started by writing your to working with , this section covers
the information needed to start programming.

 first Op Mode closed loop control

Sensors

are often vital for robots to gather information about the world around them. Use this section to find
how to use REV sensors and information on the different sensor types.
Sensors

Getting Started with Control Hub

After receiving the Control Hub it is advised to unbox the device, power the Control Hub on, and start the
configuration process. Below are the required materials to run through the initial bring up of the Control Hub
and links to the different steps of the process.

Section Summary

Connect to the Robot Controller Console

In order to manage the Control Hub (
or programming using the onboard programming
languages you must have access to the Robot
Controller Console. Follow through the steps in th
section to ensure your Control Hub is connecting
properly

REV-31-1595

Updating Wi-Fi Settings
Once in the Robot Controller Console, update you
Control Hub's Wi-Fi settings for better performanc
and network security.

 Connecting Driver Station to Control Hub

A Driver Station is required to in the REV Control
System, to run code remotely. This section walks
through the steps of connecting a Driver Station
device to a Control Hub.

Showcases what hardware components plug into

https://www.revrobotics.com/rev-31-1595/

Wiring Diagram which ports on the Control Hub.

Next Steps

Once the hardware components are connected to
the Control Hub, the basic steps for getting started
have been covered. This section covers the
important next steps you should take for working
with and maintaining your Control System.

Required Materials

Control Hub ()REV-31-1595

12v Slim Battery ()REV-31-1302

Driver Hub ()REV-31-1596

Etpark Wired Controller for PS4 ()REV-39-1865

USB A Female to Micro USB ()REV-31-1807

Windows PC running the REV Hardware Client

Optional Additional Materials needed to :Connect an Expansion Hub

Expansion Hub ()REV-31-1153

XT30 Extension Cable (, included with Expansion Hub)REV-31-1392

JST PH 3-pin Communication Cable (, included with Expansion Hub)REV-31-1417

Videos

Using a Web Browser

Control Hub: Getting Started using a Web BrowserControl Hub: Getting Started using a Web Browser

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-31-1596/
https://www.revrobotics.com/rev-39-1865/
https://www.revrobotics.com/rev-31-1807/
https://docs.revrobotics.com/rev-control-system/managing-the-control-system/rev-hardware-client
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/
https://www.youtube.com/watch?v=fyxpptqQumw

Using the REV Hardware Client

Control Hub: Getting Started using the REV Hardware ClientControl Hub: Getting Started using the REV Hardware Client

Connect to the Robot Controller Console

In order to manage the Control Hub () or programming using the onboard programming
languages, a computer or other Wi-Fi enabled device will need to connect to the Control Hub's Robot
Controller Console. The Robot Control Console is a local network created by the Control Hub to program
and manage the device.

REV-31-1595

This example assumes the user uses Windows 10 as their operating system. If you are not using
a Windows 10, the procedure to connect to the network will differ. Refer to your device’s
documentation for details on how to connect to a Wi-Fi network.

By default, the Control Hub has a name that begins with "FTC-" or "FIRST-" followed by four characters that
are assigned randomly. The default password for the network is "password". If either of these is forgotten,
there are a few ways to recovery or reset the password on the Control Hub.

There are two ways to access the Robot Controller Console. The first will cover how to access the Robot
Controller Console with the REV Hardware Client. It is recommended to use the as it
will allow the user to access the Robot Controller Console over a wired connection. The second will run
through accessing the .

REV Hardware Client

Robot Controller Console via a web browser

https://www.youtube.com/watch?v=YdgaknRQvKQ
https://www.revrobotics.com/rev-31-1595/

REV Hardware Client

 and install on a Windows PC. Download the latest version of the REV Hardware Client

Steps ​

Power on the Control Hub, by plugging the 12V
Slim Battery () into the XT30
connector labeled “BATTERY” on the Control Hub.

REV-31-1302 ​ ​

The Control Hub is ready to connect with a PC
when the LED turns green. Note: the light blinks
blue every ~5 seconds to indicate that the Control
Hub is healthy.

​ ​

Plug the Control Hub into the PC using a USB-A to
USB-C Cable ()REV-11-1232

​

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the UI
under the Hardware Tab. Select the Control Hub.

After selecting the Connected Hardware the Update tab will pop up. Select the Program and Manage tab.

https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-11-1232/

This will take you to the Robot Controller Console build into the REV Hardware Client.

At this point it is useful to update the , , and
the .

Control Hub Operating System Robot Controller App
Hub Firmware

Once in the Robot Controller Console, the homepage of the console will appear. In the upper right corner is
the navigation menu which will allow users to access the Blocks, OnBot Java, and Manage pages within the
console.

Web Browser

With the Control Hub powered, access the Wi-Fi network selector. For Windows 10 devices, click the Wi-Fi
Network icon in the lower right corner of the desktop.

Look for the Wi-Fi that matches the naming protocol of the device.

To ensure you are able to locate the correct device, it is recommended that you first connect in a
location without other active Control Hubs or significant Wi-Fi connections.

Depending on your version of Windows or other theme settings your Wi-Fi Networks list may vary
in appearance.

Once you have found the target network in the list, click on it to select it then press connect.

Provide the network password (in this example “password”) and press “Next” to continue.

Passwords are case sensitive. Make sure that your spelling and capitalization matches the

original spelling and capitalization for the password.

Once a wireless connection is established, the status is displayed in the wireless settings for the device.

When connected to the Control Hub, the connected device will not have access to the Internet. It
only has direct access to the Control Hub.

Open a web browser (Chrome, Firefox, Internet Explorer) and navigate to "192.168.43.1:8080" through the
address bar.

From the Robot Controller Console users can , upgrade the and
, as well as the device. It is strongly recommended that you go through all steps above

before you begin programming.

 update the Wi-Fi settings operating system
firmware program

Updating Wi-Fi Settings

One of the first recommendations made to users of the REV Control System is to update Wi-Fi settings,
specifically the name and the password. All REV Control Hub's come with a default network name and
password. It is useful to change the name and password especially in environments where there are
multiple Control Hubs running like at an event or in a classroom. Changing from the default adds the
element of network security back to the Hub by reducing the potential for access from outside sources.

With the release of Robot Controller Application 5.5 there have been some major changes to the process of
changing Control Hub name, password, Wi-Fi Channel, and Wi-Fi band. Previously changes to the name
and password had to be made separately. Each change would reset the network and require users to
reconnect to the network in order to change anything else. With 5.5 all changes can be made at once.

The Control Hub () can utilize either the 2.4 GHz or 5 GHz Wi-Fi band. In OS versions 1.1.1
and older the Control hub defaults to a channel on the 2.4 GHz band. REV Robotics advises that during
competition teams utilize a 5 GHz channel for robot communication. Consult the table below for Driver
Station devices that can operate on the 5 GHz band.

REV-31-1595

When using OS 1.1.2 the Control Hub operates by default on the 5Ghz band. To switch to the 2.4
Ghz band without the REV Hardware Client, see the .Managing the Wi-Fi Network section

Supported Android Devices and Wi-Fi Band Capabilities

Phone Wi-Fi Band

REV Driver Hub ()REV-31-1596 2.4 GHz & 5 GHz (Dual Band)

Moto G (2nd generation) 2.4 GHz (Single Band)

Moto G (3rd generation) 2.4 GHz (Single Band)

Moto G (4th generation) 2.4 GHz (Single Band)

Moto G5 2.4 GHz & 5 GHz (Dual Band)

Moto G5 Plus 2.4 GHz & 5 GHz (Dual Band)

Moto E4 2.4 GHz & 5 GHz (Dual Band)

Moto E5 2.4 GHz & 5 GHz (Dual Band)

Moto E5 Play 2.4 GHz & 5 GHz (Dual Band)

The following section will highlight how to access and make changes within the Wi-Fi settings. This section
will use the REV Hardware Client to showcase how to make these changes. Once a user has connected to
the Robot Controller Console, either via the Hardware Client or a web browser, the steps for accessing Wi-
Fi settings are the same.

The following steps assume that users have already connected to the Robot Controller Console.
Please go to the if this is not the case. Connect to the Robot Controller Console

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1596/

Steps to Updating Wi-Fi Settings

While in the Robot Controller Console select the menu button. In the image below the menu button is
highlighted by an orange square in the upper right-hand corner.

When the menu opens, select Manage.

The Manage page is where the Wi-Fi Settings live. The following steps will show and discuss each change
as it is made. Please keep in mind the following warning while moving through the steps:

You will need to reconnect to the new Wi-Fi network after changing the name and/or password. This is true
for any Wi-Fi connection, but if you are accessing the REV Hardware Client via a USB connection the Hub
will stay connected. Though, you may need to close and reopen the Hardware Client in order to see the
changes.

Not all aspects of the Wi-Fi settings need to be changed. If you need to change name and
password and do not need to mess with the Wi-Fi band or channel, leave those settings at
default, and click Apply Wi-Fi Settings.

Changing Control Hub Name

Under Wi-Fi Settings, there is an option to change the name of the Control Hub.

It is useful to change the Control Hub name to something unique, especially in environments
where there are multiple Control Hubs running like at an event or in a classroom. Changing from
the default adds the element of network security back to the Hub by reducing the potential for
access from outside sources.

For FTC teams you will want to change the name from the default to team number - RC. (i.e. 99999-RC)

Changing the Control Hub Password

Under Wi-Fi Settings, there is an option to change the password of the Control Hub. There are not any
restrictions on the password. Changing it from the default is advised but it does not have to change to
anything complicated.

The default password 'password' is a well know password by Control Hub users, since it is the
default for all Control Hubs. Staying with the default password significantly reduces network
security. Changing from the default adds the element of network security back to the Hub by
reducing the potential for access from outside sources.

Changing the Wi-Fi Band and Channel

As mentioned in the of this page, the Control Hub is capable of utilizing either the 2.4
GHz or 5 GHz Wi-Fi band. This change is also made within the Wi-Fi Settings.

introduction section

The Robot Controller Console makes it easy to change between the 2.4 GHz an 5GHz bands. It is advised
to check the table to determine which band to operate in. Legal Android and Wi-Fi Band Capabilities

Once a Wi-Fi band is chosen there are two options for dealing with Wi-Fi channels. One option is to let the
Control Hub auto default on a channel. The other is to set a specific channel. Both options can be accessed
via the drop down menu under the Wi-Fi channel section of the Wi-Fi settings.

It is valuable to know how to change the Wi-Fi Band and Channel as technical staff at an event can request
to change those settings.

The Wi-Fi band and channel can be changed via the Driver Station Application. For more
information on how to make these changes from the Driver Station please see

section.
Managing the Wi-

Fi Network

Connecting Driver Station to Control Hub

When you first receive your Control Hub (), you will have to connect it to a supported Android
Device, like a Driver Hub. The following section of the page will walk through how to pair a Driver Hub or
Driver Station phone to a Control Hub.

REV-31-1595

This section assumes you have already gone through the process of setting up your Driver
Station device. If you have not please go through the following guides for more information on
getting started with a Driver Station:

 - To know what supported Android
Devices can be used as a Driver Station
Supported Android Devices and Wi-Fi Band Capabilities

 - To setup a Driver HubGetting Started with Driver Hub

 - To setup a non Drive Hub supported Android Devices as
a Driver Station
Configuring Your Android Devices

Connecting the Driver Station with the Control Hub

Connect a Driver Station to a Control HubConnect a Driver Station to a Control Hub

https://www.revrobotics.com/rev-31-1595/
https://www.youtube.com/watch?v=NcOK_JPGil8

The procedure for pairing the Driver Hub and the Control Hub only needs to be performed once
for each set of hardware. If you replace your Driver Hub or Control Hub, this procedure will need
to be repeated.

​

Power on the Control Hub by plugging the 12V
Slim Battery into the XT30 connector labeled
“BATTERY” on the Control Hub. You may also
choose to include a switch between the Battery and
Control Hub, if you prefer.

​ ​

The Control Hub is ready to pair with the Driver
Station when the LED turns green. Note: the light
blinks blue every ~5 seconds to indicate that the
Control Hub is healthy.

​ ​

Once you have powered on your Control Hub follow through the process for connection to either a Driver
Hub or a Driver Station phone.

This section assumes you have gone through the process of setting up your Driver
Hub. If this is not the case please go to and go
through the process of bringing up your Driver Hub.

Getting Started with the Driver Hub

​

Open the Driver Station application from the HOME
Screen.

​

Driver Hub

In the Driver Station application, click the three dots
in the upper right corner to open the drop down
menu.

​

In the drop down menu select Settings. ​

Select, “Pair with Robot Controller”. ​

Select Wi-Fi Settings.

Note: In initial bring up for the Driver Hub you are
asked to connect to a Wi-Fi network with internet,
which is why this Driver Hub is already connected
to a network. However, now the focus is on
connecting to the Control Hub.

​

Select the name of the Wi-Fi network generated by
your Control Hub. The default SSID name starts

with either “FIRST-“ or “FTC-“. In this example we
want to choose our REV-DEMO Control Hub.

​

Enter the password to the Wi-Fi network in the
password field. This defaults to “password”. Press
CONNECT.

After pressing connect, press the back arrow at the
bottom of the display until you return to the main
driver station screen.

​

After a couple of seconds, the Driver Station page
will indicate the network name, a ping time, and
battery voltage.

​

Your Driver Hub is now paired with your Control Hub!

This section assumes you have gone through the process of setting up your Driver
Station Android Device. If this is not the case please go to

and go through the process of configuring an Android Device to act as the
Driver Station.

Configuring Your Android
Device

​

Power on your Android Device by holding down the
power button.

​

Other Supported Android Device

Open the Driver Station application from the HOME
Screen.

​

On the Driver Station page, open the menu from the
top right corner, then select Settings.

​

Select, Pairing Method.

​

Select, Control Hub. ​

Select, Pair with Robot Controller.

​

Select Wifi Settings. ​

Select the name of the Wifi network generated by
your Control Hub. The default SSID name starts
with either “FIRST-“ or “FTC-“.

​

Enter the password to the Wifi network in the
password field. This defaults to “password”. Press
CONNECT.

After pressing connect, press the back arrow at the
bottom of the display until you return to the main
driver station screen.

​

After a couple of seconds, the Driver Station page
will indicate the network name, a ping time, and
battery voltage.

Your Driver Station is now paired with your Control Hub!

Wiring Diagram

Before configuring your Control Hub, devices must be connected to the Control Hub. Below is a sample
wiring diagram to show a sample of actuators and sensors usable with the Control Hub.

For more information on the connectors and cables used with the Control Hub see the links below:

XT-30 - Power Cable

JST VH - Motor Power

JST PH - Sensors and RS485

Next Steps

Being able to connect to the Robot Controller Console, connect a Driver Station to a Control Hub, and the
basics of connecting Control Hub to different actuators and sensors is just the start. This section focuses on
the next steps for using the REV Control System, including getting started with programming and best
practices for managing the Control Hub and Slim Batteries.

Getting Started with Programming

Now that the Control Hub is setup, it is ready to start programming to control a robot! The
 walks through the necessary steps for getting started with programming. The guide has

suggestions to choose the right programming tool, configuring your robot, and the basics of programming.

 Hello Robot
programming guide

In order for the Control Hub to properly communicate with hardware components, you must perform a two
part process known as hardware mapping. One of the most important, and commonly forgotten steps, when
getting started programming is the creation of the configuration file, which is the first part of the hardware
mapping process. A properly created configuration file, defines each hardware component with a unique
name and a port type and number. After attaching hardware components to the Hub, use the Driver Station
application to create a configuration, before beginning to program.

For more information on the important of hardware mapping and how to configure your robot
please see the page. Hello Robot - Configuration

Adding a Expansion Hub

Depending on the application more motor, sensor, or servo ports maybe needed. If your robot needs more
motors adding an Expansion Hub might be necessary. Adding an Expansion Hub adds the same amount of
hardware ports as one Control Hub (an additional four motor ports, six servo ports, and all the sensor ports)
to the system.

For more information on how to add a secondary Expansion Hub please visit our
page.

Adding an
Expansion Hub

Managing the Control Hub

The Control Hub and Expansion Hub are field upgradable devices. When new software is released with
new features, bug fixes, and season specific changes users can update the device themselves. Checking
for software updates at the start of September and then about every 6-8 weeks is recommended. To check
for software updates you can use the or check the Managing the Control System
section of the documentation.

REV Hardware Client

Information on updating various pieces of software for the Control Hub, Expansion Hub, and
Driver Hub can be found in the Managing the Control System section.

Slim Battery Best Practices

To maintain and care for your battery, reference the general best practices on the 12V Slim Battery (
) product page or the information below. This includes how to properly store, charge, and care for your

battery on the long term.

REV-31-
1302

All rechargeable batteries have a finite lifespan. Factors that affect lifespan include the number of
discharge/charge cycles and the average loading of the battery. The following best practices can help
maximize the lifespan of your battery:

Charge rate

Minimum: 1.5A

Maximum: 3.0A

Recommended: 1.8A or 2.0A

Do not overcharge

Disconnect the battery from the charger once it indicates a full charge.

Typical charge time does not exceed 2 hours.

https://www.revrobotics.com/rev-31-1302/

Do not charge a battery that hasn't been discharged significantly.For example, running the robot under minimal load for a few minutes will not significantly
discharge the battery.

Minimum no-load voltage: 9.0V

Discharging the battery past 9.0V can reduce the lifespan of the battery and can permanently
damage the cells.

Periodic dips below 9.0V when under load is expected and OK.

For example, don't forget to unplug your battery after you are finished running the robot and don't
run your robot until it completely stops responding!

Temperature

Let the battery cool before and after charging.

The battery may feel warm after heavy loading or after charging. This is normal.

Getting Started with Driver Hub

After receiving the Driver Hub it is advised to unbox the device, plug the Driver Hub in to charge over USB-
C, and power on the Driver Hub. Below is the initial bring up process of the Driver Hub.

Required Materials

Driver Hub ()REV-31-1596

USB-A to USB-C Cable

USB-A Wall Charger

Driver Hub: Getting StartedDriver Hub: Getting Started

https://www.revrobotics.com/rev-31-1596/
https://www.youtube.com/watch?v=RPcZOzUOZHg

Battery Installation

To install the battery place it with the REV Logo out and the -/+ located near the contacts for the device. Add
on the rear door and screw in using the included M3 hardware.

M3
M3
M3
M3

Before continuing to set up the Driver Hub allow the battery to charge over USB-C or keep the
Driver Hub plugged into a power source during set up.

Setting up the Driver Hub

When the Driver Hub is first powered up, or a factory reset is performed, an initial set up process is needed.
Start by selecting next on the main screen to continue.

Select a local Wi-Fi network that has access to the internet, enter in the password for that network if
required, and select next.

Time zone and date of the device are set by the local Wi-Fi network. Confirm these settings are correct
before proceeding by the Next button.

Initial set up is complete! Select Finish to operate the Driver Hub.

Initial Update

After setting up the Driver Hub, the Software Manager application will open. Select the Update All button to
start the download and installation of software updates for the Driver Hub.

The updates can take several minutes to complete. Make sure the Driver Hub is charged or plug
in the Driver Hub during the updating process.

1.0.1

1.1.0

Now the Driver Hub is !ready to connect to a Control Hub

Navigating the Driver Station Application

Once the Driver Hub is connected to a Control Hub, you will have access to the entire Driver Station
Application interface. Like any application, understanding the major components that make up the Driver
Station Application interface, will maximize your ability to utilize the application efficiently. Consider the
following components:

Limit Switch 1: True
Demo

HelloRobot

1

2
3

4 5

Demo

INIT

6 7

8
9

10

1
Initialize, start, and stop
programs

Only available when a program
has been selected.

Displays telemetry outputs.

2 Telemetry display ​
Displays any system warnings
and error codes

3 Active configuration

Displays which configuration fi
is currently active.
​
If this section says <no config
file> you will need to activate o

. create a configuration file

4 Network information
Displays Control Hub SSID
Name, signal strength, and pin
time.

5 Gamepad connections.
See for
more information.

Connecting Gamepads

6 Autonomous drop down menu
Drop down menu that displays
all autonomous programs save
on the Control Hub.

7 Teleop drop down menu
Drop down menu that displays
all teleop programs saved on th
Control Hub.

8 System power display

Displays the amount of battery
voltage powering the robot,
when connected to a Control
Hub.

9 Settings drop down menu

Access settings, configure the
robot, restart the robot, check to
see if your system meets
competition inspection
requirements and more.

10 Practice Timer
A built in timer that can be used
to to practice for different
portions of a match.

Tips and Tricks

Limit Switch 1: True
Demo

HelloRobot

1

2
3

4 5
Demo

INIT

6 7

8
9

10

If you tap on area 4, it will switch to displaying the link speed and signal strength. It will go back to showing
the signal strength and ping time if you tap it again.

The smaller number in area 8 is the lowest voltage that the Driver Station has observed from the Robot
Controller. If you tap area 8, the lowest voltage will be reset to the current voltage.

Connecting Gamepads

The Driver Station Application allows for the connection of two gamepads. When working with the Driver
Hub these gamepads can be plugged into any of the three USB 2.0 ports. Once the gamepads are plugged
in, you will need to initialize them. For the following example we will use PS4 controllers, such as the Etpark
Wired Controller for PS4 ().REV-39-1865

User 1 User 2

To initialize the gamepad that will act as User 1 (gamepad1, in code) press the options button and the

X button on the gamepad at the same time. To initialize User 2 (gamepad2, in code) press the options
button and the O button at the same time.

For the Logitech F310 Gaming Controller and Xbox 360 Controller for Windows, press start and
A at the same time to initialize User 1 and start and B at the same time to initialize User 2.

Adding More Motors

https://www.revrobotics.com/rev-39-1865/

The Control Hub () and Expansion Hub () can each drive up to four DC brushed
motors. As mechanisms are added to the robot the number of motor ports may not be sufficient. There are
two ways to add more motors to the Control System, either the SPARKmini Motor Controller ()
or adding an Expansion Hub. The Following two rules give a general idea of when to choose one method
over another:

REV-31-1595 REV-31-1153

REV-31-1230

If one or two motors are needed, consider using the SPARKmini Motor Controller.

If three to four additional motors are needed, consider adding an Expansion Hub.

For additional information on or , visit the linked
pages!

how to use a SPARKmini how to add an Expansion Hub

SPARKmini Motor Controller

Adding an Expansion Hub

SPARKmini Motor Controller

The SPARKmini Motor Controller () is an inexpensive in-line brushed DC motor controller
designed to give FIRST® Tech Challenge teams more bang for their buck. It offers the same performance
characteristics as the REV Control Hub () or Expansion Hub () motor ports in a
small 60mm x 22mm footprint. Now FTC teams can add a SPARKmini Motor Controller to utilize more than
four DC motors from a single Hub in a space-efficient package.

REV-31-1230

REV-31-1595 REV-31-1153

Power and Motor Connections

The SPARKmini has three integrated wires with connectors dedicated to power, control, and the motor; one
for power, one 3-wire servo-PWM connector for control, and one connector for the

motor. The figure below shows each of these connections.
XT30 connector JST-VH

Connect the power wire to a free XT30 port on the REV Control Hub , REV Expansion Hub (REV-31-1153),
or through an XT30 Power Distribution Block (REV-31-1293) that is connected to a free Control/Expansion

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1230/
https://www.revrobotics.com/rev-31-1230/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Hub XT30 port. Connect the control wire to an open servo port on the hub and the motor wire to a JST-VH
port on a motor, like the REV HD Hex Motor () or the REV Core Hex Motor ().REV-41-1301 REV-41-1300

DO NOT reverse polarity on the power input connections. The SPARKmini does not contain
reverse polarity protection. This can permanently damage the SPARKmini and will void the
warranty.

DO NOT swap the motor and power connections. This can result in uncontrolled motor operation
and can permanently damage the SPARKmini, voiding the warranty.

 Servo-PWM Input

A motor’s speed is controlled by varying the voltage that is applied to it. The SPARKmini’s output voltage
can be controlled by sending it an extended-range servo-PWM pulse. The extended 500µs to 2500µs servo-
pulse corresponds to full-reverse and full-forward rotation with 1500µs as the neutral position (no rotation).
The pulses are proportionally related to the motor output duty cycle, therefore variable speed can be
achieved with pulses in between the extremes. The following table describes the pulse ranges in more
detail.

Table - Control Signal Pulse Ranges

Pulse Width (p
in µs)

​ ​ ​ ​

Full Reverse Prop. Reverse Neutral Prop. Forward Full Forward

p ≤ 500 500 < p < 1490 1490 ≤ p ≤ 1510 1510 < p < 2500 2500 ≤ p

Zero-Power Behavior

When the SPARKmini is receiving a neutral command it will not provide any power to the attached motor.
There are two options for how the SPARKmini handles this zero-power state:

Brake - Motor terminals are shorted to each other to dissipate electrical energy, effectively braking the motor.
Coast - Motor terminals are disconnected, allowing the motor to spin down at its own rate.

The zero-power behavior can be selected via a switch located towards the center of the SPARKmini
housing, shown in Figure 2. Each mode can be selected by sliding the switch to either the Brake (B) or
Coast (C) positions.

https://www.revrobotics.com/rev-41-1301/
https://www.revrobotics.com/rev-41-1300/

Coast/Brake Switch

The SPARKmini will indicate whether it is in Brake or Coast mode via the Status LED, located in the center
of the housing, whenever it is outputting zero-power. Solid or flashing blue indicates Brake Mode while solid
or flashing yellow indicates Coast Mode. See the LED Status Codes section for more details.

LED Status Codes

Brake
Coas t

Brake
Coas t

Neutra l

Proportional Revers e

Full Revers e

No Signal

Full Forward

Proportional Forward

LED Status Code
Time Scale 1 s econd 1 s econd

State Normal Operation

Specifications

Parameter Min Typ Max Unit

Supply voltage
range (VIN)

6.0 12 20 V

Supply voltage
absolute
maximum

- - 25 V

Continuous
output current

- - 15 A

Peak output
current

- - 20 A

Output voltage
range

- VIN - + VIN V

Output frequency - 10 - kHz

Input pulse width
range

500 - 2500 µs

Input frequency 16 50 200 Hz

Input timeout - 65.5 - ms

Input deadband - ±10 - µs

Input low-level
voltage

-0.3 - 0.8 V

Input high-level
voltage

2.0 5.0 5.3 V

Weight - 0.87 - oz

Dimensions
(excluding wires)

- 60 x 22 x 12 - mm

Adding an Expansion Hub

If you want to use more than 4 motors or 6 servos, you can add an Expansion Hub to your robot. An
Expansion Hub () can be added to a Control Hub () or another Expansion Hub.
The Expansion Hub has all of the same ports as the Control Hub but without the wireless capability.

REV-31-1153 REV-31-1595

Control Hub vs Expansion Hub in FIRST

FIRST Tech Challenge FIRST Global

FIRST Tech Challenge teams may use one (1)
Control Hub and may add one (1) Expansion Hub
starting in the 2020-2021 season. Read the official
FTC Game Manuals for complete game rules.

FIRST Global teams must use one (1) Control Hu
and may add one (1) Expansion Hub to their robo
Read the official FIRST Global manual for
complete game rules.

If you are using a configuration file from a 5.5 or earlier version of the Robot Controller
Application, you will need to create a new configuration file.

Adding an Expansion Hub to your Robot

https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1595/

Step Image

Use the XT Extension Cable to connect power
between the Control Hub and the Expansion Hub.

Use a 3-pin JST PH cable to connect the RS485
port on the Control Hub to the Expansion Hub.

​ ​

From the Driver Station choose “Configure Robot”

​ ​

Select “New” in the top left hand corner.

​ ​

Select “Control Hub Portal”

Note: This will show an Expansion Hub Portal if

using an Android Device as a Robot Controller

​ ​

Now you have two Hubs to choose from. Either the
Control Hub or the Expansion Hub.

“Expansion Hub 2” is the connected Expansion
Hub that is communicating over RS485.

Configure and program as necessary. Please see
the section of for an overview of
configuration.

Configuration

Note: If using an Android Device as a Robot
Controller there will be two Expansion Hubs
located here. The Expansion Hub Address may
need to change so they do not conflict.

​ ​

Troubleshooting the Control
System

General Troubleshooting

One of the key aspects of troubleshooting is understanding the most common issues that occur in a system.
Once those problems, and their indicators, are defined a flow has to be created. For example, a check
engine light in a car indicates any number of issues. When a cars check engine light comes on, a mechanic
pulls the codes from the car to narrow down the issue to a specific part of the engine. Even if the code leads
to a specific part of the engine, like the transmission, it is not always indicative of the exact problem.
However, there is a process flow. Each step narrows down the problem to a potential solution.
Troubleshooting the REV Control system is no different!

The status LED is the REV Control System equivalent to the check engine light mentioned in the
example. Visit the section to understand what each code is and what it indicates.LED Blink Code

Many issues can be solved by systematic troubleshooting without needing to contact REV Support. Take a
look at the troubleshooting tips below for help in determining the cause of the issue you are seeing. Should
you need to contact us, describing the steps you've taken in detail will help us get you up and running
quickly. The section is divided into general best practices, Control Hub () troubleshooting and
Expansion Hub () troubleshooting.

REV-31-1595
REV-31-1153

General Best Practices

Before diving into common troubleshooting paths its important to understand the general guidelines, or best
practices, for Control System Health.

Charge the Battery - While a charged battery and phone are crucial to a healthy control system in
general; it is also helpful to ensure batteries and phones are charged before a match.

Update - The applications, firmware, and operating system have periodic updates to improve the
control system. Keeping the control system up to date ensures the best performance!

Isolate the Issue - This is key to effective troubleshooting. Many issues can show the same symptom,
so eliminating failure points one at a time is critical to finding the root cause.

DO NOT plug a battery charger into either the Control Hub or Expansion Hub. It will damage the
Hub and cause eventual device failure

Maintaining and taking care of the 12V Slim Battery is also important for troubleshooting purposes. All

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

rechargeable batteries have a finite lifespan however following the
can extend the lifespan of the battery.

best practices for the 12V Slim Battery

Control Hub Troubleshooting

The following questions consider common indicators of issues seen in the Control Hub. Think about the
potential indicators your Hub is currently exhibiting and consider the following questions:

Is the Driver Station device unable to connect to to
the Control Hub Wi-Fi?

​ ​Yes

Is the Driver Station connected to the Wi-Fi but not
showing a ping or any other signs of
communication?

​ ​Yes

Has the Status LED been solid blue for longer than
30 seconds (after start up)?

​ ​Yes

Can't Connect the Control Hub to a Computer

Can't Connect the
Control Hub to a

Computer

Blue

Green

Status LED
output?

Please jump to the
troubleshooting guide for
"Status LED is Solid Blue
for More than 30
Seconds"

Network is still not visible

Network is visible

Try changing the WiFi Band:

1. Power on the Control Hub
2. Once the Control Hub has fully

booted (LED is solid green), press
and hold the button on the front of
the Control Hub.

3. Release button when the Control
Hub LED MAGENTA or YELLOW.

No

Yes

Is the
Control Hub

SSID
visible?

NoAble to sign into
the Control Hub? Network Inaccessible

Please follow through the following WiFi
reset procedure:

1. Press and hold the button on the
front of the Control Hub

2. While pressing the button, power
on the Control Hub

3 Release button when the Control

Use the REV
Hardware Client to
Send Diagnostic

Yes

the Control Hub?

Signed into network

3. Release button when the Control
Hub LED begins to flash a
multitude of colors. When the
Control Hub flashes Blue then
Green it has completed the reset
and is ready to connect.

Yes

No

Able to
connect to the

Robot
Controller
Console?

Accessed Robot Control Console

Robot Control Console Inaccessible

Make sure you are entering the correct IP
address:

For Expansion Hubs and Robot Controller
Phones: 192.168.49:8080

For Control Hubs: 192.168.43.1:8080

Congrats! The
Control Hub is
connected to the
laptop

Send Diagnostic
Data to REV

The Wi-Fi reset will down grade the Wi-Fi connection to 2.4GHz. If you have an android device
with 5GHz you may want to switch the Wi-Fi Band in order to run on 5GHz. Check out the

Section to learn more about making this switch.Updating Wi-Fi Settings

External factors, such as local Wi-Fi environment, play a part in the ability to establish or maintain a
connection between a Control Hub and a computer. Like all aspects of of troubleshooting its important to
isolate an issue by asking questions and discovering the answers! As you work on troubleshooting consider
the following questions:

What is your local Wi-Fi environment like?

Local Wi-Fi environment effects the consistency of a connection to the Control Hub. Use a
 to check the local environment for channels that are cluttered with Wi-Fi networks.

to a channel with the least amount of overlap with other networks.

Wi-Fi
analyzer Change
the Control Hubs Wi-Fi channel

Are you connected to another Wi-Fi network?

The Control Hub produces a non internet Wi-Fi connection. Settings on the individual computer may
cause the device to jump to a local, remembered network that produces an internet connection.

Are you in a school or a place of business?

In addition to the amount of local networks in an environment its important to understand what those
local networks are capable of. For instance, some school districts have security measures in place
that block unauthorized Wi-Fi access points. Talk to your local Wi-Fi adminstrator to find out what
you need to get the Control Hub as an approved network.

If the Control Hub SSID is not shown in the list of available Wi-Fi networks, try manually entering
the Control Hub SSID to see if that allows you to connect.

https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer&hl=en

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

Need help getting the Log Files to send to REV Support? See for more
information.

Downloading Log File

Driver Station Won't Connect

Information in this flowchart is for the initial bring up of connecting the Control Hub with a Driver
Station. For issues with intermittent connection or periodic connection drops please check out the
information below this flowchart.

Driver Station Won't
Connect

Blue

Green

Status LED
output?

Please jump to the
troubleshooting guide for
"Status LED is Solid Blue
for More than 30
Seconds"

Network is still not visible

Network is visible

Try changing the WiFi Band:

1. Power on the Control Hub
2. Once the Control Hub has fully

booted (LED is solid green), press
and hold the button on the front of
the Control Hub.

3. Release button when the Control
Hub LED MAGENTA or YELLOW.

No

Yes

Is the
Control Hub

SSID
visible?

No

No

Able to sign into
the Control Hub? Network Inaccessible

Signed into network

Please follow through the following WiFi
reset procedure:

1. Press and hold the button on the
front of the Control Hub

2. While pressing the button, power
on the Control Hub

3. Release button when the Control
Hub LED begins to flash a
multitude of colors. When the
Control Hub flashes Blue then
Green it has completed the reset
and is ready to connect.

Check out the section
below for more
suggestions and tips!

Control Hub

Driver Station

Pairing
Method? No

Yes

Does the DS
connect if you
reset the App?

Unable to Connect

Able to Connect

Change the pairing
method to Control Hub.

Yes

No

Has a
secondary DS

been connected
to the hub?

Able to Connect

Unable to Connect

The secondary Driver Station
is likely affecting the
connection between the Hub
and the primary Driver Station.
Try the following steps:

Power off the 2nd DS
Power cycle the Hub

Select a configuration
and attempt to run an
Op Mode.

The Wi-Fi reset will down grade the Wi-Fi connection to 2.4GHz. If you have an android device
with 5GHz you may want to switch the Wi-Fi band in order to run on 5GHz. Check out the

Section to learn more about making this switch.Updating Wi-Fi Settings

External factors, such as local Wi-Fi environment, play a part in the ability to establish or maintain a
connection between a Control Hub and a Driver Station device. Like all aspects of of troubleshooting its
important to isolate an issue by asking questions and discovering the answers! As you work on
troubleshooting consider the following questions:

Is your system operating on a 2.4 GHz band or 5GHz band?

REV recommends, if you have a dual band Driver Station device, that you operate on the 5GHz Wi-
Fi band. Check out the section to learn more about making this switch.Updating Wi-Fi Settings

What is your local Wi-Fi environment like?

Local Wi-Fi environment effects the consistency of a connection to the Control Hub. Use a
 to check the local environment for channels that are cluttered with Wi-Fi networks.

to a channel with the least amount of overlap with other networks.

Wi-Fi
analyzer Change
the Control Hubs Wi-Fi channel

Are you in a school or a place of business?

In addition to the amount of local networks in an environment its important to understand what those
local networks are capable of. For instance, some school districts have security measures in place
that block unauthorized Wi-Fi access points. Talk to your local Wi-Fi administrator to find out what
you need to get the Control Hub as an approved network.

Does the the Driver Station connect to the Control Hub until a mechanism is run?

Certain mechanisms draw enough power from the Control Hub to put a strain on the battery. If you
notice a drop in displayed voltage when you start a code, or when a particular mechanism is run,
this may be indicative of a brown out condition. Other indicators include:

The Driver Station throwing errors about power to the system

The Driver Station making a disconnect sound

The voltage on the Driver Station showing 9 volts or lower when running code

Motors running at lower speeds then what they have been set to run

https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer&hl=en

To remedy this issue check out our instructions on proper battery care.

If the Control Hub SSID is not shown in the list of available Wi-Fi networks, try manually entering
the Control Hub SSID on the Driver Station to see if that allows you to connect.

If you are still experiencing connection issues, once you have gone through the flowchart and worked on
addressing the potential root of connection issues describe in the list above, start looking for patterns in the
behavior. How often does this behavior appear? Are there certain things that happen around the same time
the disconnects happen? The following list provides some ideas on what sort of patterns you might see:

The Control Hub connects fine when a team member takes it home but doesn't seem to like to connect
at school.

The Control Hub connects fine until you start driving the robot around.

Just remember correlation does not equal causation of an event but is useful data to further
troubleshooting

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

Need help getting the Log Files to send to REV Support? See for more
information.

Downloading Log File

Status LED is Solid Blue for Longer than 30 Seconds

This section is for troubleshooting a Control Hub. If you have an Expansion Hub please refer to
the guide for help solving Expansion Hub related issues. Expansion Hub Troubleshooting

Status LED is Solid Blue
for longer than 30

seconds

YesNo
Does fault

persist through
power cycle?

When dealing with the Control
Hub make sure to give the it
time to boot up before giving
commands.

If the problem occurs frequently
please contact REV Support.

Yes

No
Are you using

Android Studio?

Yes

No

Is the Control
Hub Software

Stack up to
date?

Send Diagnostic Data
to REV.

Status LED Blue

Status LED Green

Update the Robot
Controller Application,
Control Hub O.S., and
the Hub Firmware. Give
the Control Hub time to
reboot.

Status LED Green

Status LED Blue

Push a re-installation of
the current version of
Hub Firmware onto the
Control Hub.

Status LED Blue

Status LED Greeen
Try rebuilding the
Robot Controller APK
(or build your code).

Connect to Driver
Station and attempt to
run configuration.

Connect to Driver
Station and attempt to
run configuration.

https://www.revrobotics.com/rev-31-1302/

Yes

No

Are you using
External Libraries?

Status LED Blue

Status LED Green

Please check the Control Hub
permissions:

Plug the Control Hub
into a monitor via HDMI
Plug a mouse into the
Control Hub USB port
Check for Prompts

Status LED Blue

Status LED Green

Create a new Android
Studio project with the
most recent Robot
Controller APK release.

Yes

No
Are you using the

latest Robot
Controller APK?

Send Diagnostic Data
to REV.

Connect to Driver
Station and attempt to
run configuration.

The status LED on the Control Hub is similar to a check engine light on a car. A solid blue status LED
indicates the Robot Controller is not communicating to the I/O of the Control Hub, but not what the root
cause is. Updating the Control Hub to the latest version of all the software is a first step to resolving this
issue, listed below are two ways to update.

Using the REV Hardware Client

The is software designed to make managing REV devices easier for the user. This
Client automatically detects connected device(s), downloads the latest software for those device(s), and
allows for seamless updating of the device(s). Using the REV Hardware Client allows you to perform any
required updates that may be needed to recover your Control Hub. The Hardware Client can also be used to

.

REV Hardware Client

Send Diagnostic Data to REV

If you do not have a Windows 10 or higher PC, see for more options on
getting your diagnostic data to REV, and , , and

 for steps to update the software.

Downloading Log File
Updating Firmware Updating Operating System

Updating Robot Controller Application

Using Android Studio

The Control Hub must run version 5.0 or higher of the Robot Controller Application. If using
Android Studio, make sure you are using a 5.0 or higher project.

If you use Android Studio for coding you will need to update your Robot Controller application by creating a
new Android Studio project with the most recent version of the Robot Controller APK. Information on this
process can be found in .FTC Wiki Android Studio Tutorial

Still Need Assistance?

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

https://github.com/FIRST-Tech-Challenge/FtcRobotController/wiki/Downloading-the-Android-Studio-Project-Folder

Need help getting the Log Files to send to REV Support? See for more
information.

Downloading Log File

Driver Hub Troubleshooting

In this troubleshooting guide we will use specific language to describe different ways of power
cycling the Driver Hub.

Turn Off/Power Off - Long press (1-2 seconds) the power button so that a drop down menu
appears, then tap "power off" on the screen

Hard Reboot - Hold power button for at least 10 seconds and do not touch anything on the
screen. Once the green LED light turns off and the screen goes dark, release the power button,
and the hard reboot is complete.

Most Common Issues

Updating the Driver Hub Operating System

When Updating your Driver Hub to the newest operating system, version 1.2.0, please be sure to
follow these steps:

Install the update on a fully charged Driver Hub. If the update fails, please plug in your hub
and try again after fully charging.

Don't touch the screen when a loading bar is displayed on the Driver Hub during the update
process. If you touch the screen you will be directed to a menu after installation completes.
Do not touch the screen and hard reboot your Driver Hub.

Once you have updated your hub, please verify that your device is showing the current
version 1.2.0, in the REV Hardware Client.

Updating the OS

Driver Hub Intermittent Battery Power Loss

Some Driver Hubs have a slight amount of extra space inside the battery bay that may cause a
loss of power or intermittent battery charging. We have two quick fix options we are suggesting
as solutions. The first is to use a small piece of folded paper or a few layers of tape to provide a
more secure connection between the contacts. The second is a piece of foam tape we can ship

Unexpected Shut Down

to teams which will accomplish the same goal. Suggested installation steps are highlighted
below:

Option 1: Tape Quick Fix

Tape (painters tape or masking tape) is placed on the thin edge above the battery on the side opposite the contacts

Any tape or paper needs to sit inside the battery bay door edge

Option 2: Foam Tape

1. Cut foam tape into small pieces, approximately 2 inches or less
long. The foam tape recommended is approximately 1/4 inch or

less wide and 1/16 inch or less thick

2. Foam tape will be applied inside the battery case, opposite battery contacts
and below the ridge that the battery door sits within.

3. Stick foam strip in the middle, both side to side and top to bottom, of
the vertical surface opposite the battery contact switch.

4. Press foam strip down firmly to make sure it sticks.

5.1 Insert battery by inserting top of battery
towards foam, and gently squeezing battery
towards foam with thumb until battery can

easily drop into battery case.

5.2 Continue to push the battery down until it is
flush in the case.

6. Done

Common Charging/Power Issue Symptoms

The symptoms listed below can have a number of causes.

Driver Hub only turns on when plugged into a charger

Battery is discharging rapidly

Battery reports low-battery at levels significantly above 0% and shuts off

Device will not boot due to low battery even when Driver Hub is charged

Driver Hub is on charger but will not turn on

Device stopped charging and will not continue to charge

To properly troubleshoot, please start with the steps below

1. Check the orientation of the battery - see Battery Installation

2. Ensure you are using the charger that came with the Driver Hub - the charger must
specifically be a non-PD charger for these troubleshooting steps, and using the charger that
was shipped with the Driver Hub is the simplest way to confirm that.

3. Unplugging and replugging in the charger from the Driver Hub may resolve some symptoms

4. Ensure your Driver Hub is fully updated

5. Perform a Battery Recalibration

6. If possible, swap the battery with a known good battery to see if the issue follows the battery
or follows the Driver Hub unit

The following are known issues that we are working to resolve via a future software update:

Waking Wi-Fi from a Sleep State

There is a known issue with the Wi-Fi driver not restarting correctly when the Driver Hub is
woken from a "sleep" state. The current resolution is to perform a hard reboot on the device
when the Driver Hub is having issues connecting to a Wi-Fi network.

You can make sure this issue doesn't happen before a match by leaving the screen on, and the
Driver Station app open. This will prevent the Driver Hub from going to sleep.

Unlock Times are Inconsistent

Unlock can take anywhere from 2-10 seconds to occur, this is normal behavior.

Device Froze or Crashed while in Sleep Mode

Perform a hard reboot to wake up the device. This includes some cases where status LED B is
solid green, indicating that the device is on, but the screen will not wake.

Inconsistent Battery Drain

Inconsistent battery draining while in a "sleep" state is a known issue. Devices may also shut off

Known Software Issues

while in a "sleep" state due to this. Future software updates are in the works to resolve this.

Additional Troubleshooting

"App Not Installed" Error

On the homepage the FTC Driver Station app can report an "app not installed" error after updating the OS
and the app. This can also cause the Driver Hub to not allow you to open the FTC Driver Station app. To fix
this do the following:

1. Remove the Driver Station app icon on the home page by clicking and dragging to the X icon

2. Drag the new icon from the app drawer on the home screen. The app drawer is accessed by swiping up
on the home screen of the device.

Android Permissions Lock Out

If the FTC Driver Station app is locked out due to android permissions, a factory reset of the Driver Hub
should resolve this issue. Please power on the device, then follow the steps below to perform a factory reset:

1. Tap the "Setting" icon

2. Tap the "System" icon

3. Tap "reset options"

4. Tap "erase all data" (factory reset)

Battery Installation

To install the battery, place it with the REV Logo facing out and the -/+ located near the contacts for the
device. Add on the rear door and screw in using the included M3 hardware.

A battery that is properly installed

Battery Calibration

We are aware of some Driver Hubs that were shipped from the factory without having their batteries properly
calibrated. If you are experiencing power issues such as trouble charging or being unable to power on the
device, try the following:

1. Plug Driver Hub into a charger without battery (Please use the charger that came with the Driver Hub to
ensure a proper calibration)

2. Turn on Driver Hub and verify that the Driver Hub reports 100% battery charge. If the Driver Hub does
not report 100% charge, you may be using a PD charger and not the one that came with the Driver Hub.

3. Install battery into Driver Hub while device is still on and charging

4. Charge for at least 8 hours and do not remove battery or charge cable

5. Remove Driver Hub from Charger

6. Hard Reboot

Battery Verification

After completing a battery calibration, use these steps to verify that your battery is functioning as expected.

1. Place the battery in a Driver Hub and verify that the Driver Hub turns on.

2. Shake the Driver Hub with the screen still on and verify that the battery does not lose physical contact
with the Driver Hub's contacts. If power drops, please see .instructions for Unexpected Shutdown above

3. Take note of the indicated battery charge level, charge the Driver Hub for 10 minutes, and verify that the
battery charge level increased.

4. If you have the time, perform a full charge/discharge cycle with the battery to verify that the battery
behaves normally.

Digitizer Lines

Due to variances in the manufacturing process related to screen digitizer installation, some Driver Hubs
have minor visible digitizer lines on the screens when the device is powered off. These lines are more
prevalent in some units than others, but the presence or absence of digitizer lines does not impact the
performance of the touch screen or unit in any way. Please contact us at support@revrobotics.com if you
have any concerns about your specific unit.

Connecting to Control Hub

Co ect g to Co t o ub

Information in this flowchart is for the initial bring up of connecting the Control Hub with a Driver
Hub. For issues with intermittent connection or periodic connection drops please check out the
information below this flowchart.

The Wi-Fi reset will down grade the Wi-Fi connection to 2.4GHz. If you have an android device
with 5GHz you may want to switch the Wi-Fi band in order to run on 5GHz. Check out the

Section to learn more about making this switch.Updating Wi-Fi Settings

External factors, such as local Wi-Fi environment, play a part in the ability to establish or maintain a
connection between a Control Hub and a Driver Station device. Like all aspects of of troubleshooting its
important to isolate an issue by asking questions and discovering the answers! As you work on
troubleshooting consider the following questions:

Is your system operating on a 2.4 GHz band or 5GHz band?

REV recommends, if you have a dual band Driver Station device, that you operate on the 5GHz Wi-
Fi band. Check out the section to learn more about making this switch.Updating Wi-Fi Settings

What is your local Wi-Fi environment like?

Local Wi-Fi environment effects the consistency of a connection to the Control Hub. Use a
 to check the local environment for channels that are cluttered with Wi-Fi networks.

to a channel with the least amount of overlap with other networks.

Wi-Fi
analyzer Change
the Control Hubs Wi-Fi channel

Are you in a school or a place of business?

In addition to the amount of local networks in an environment its important to understand what those
local networks are capable of. For instance, some school districts have security measures in place
that block unauthorized Wi-Fi access points. Talk to your local Wi-Fi administrator to find out what
you need to get the Control Hub as an approved network.

Does the the Driver Hub connect to the Control Hub until a mechanism is run?

Certain mechanisms draw enough power from the Control Hub to put a strain on the battery. If you
notice a drop in displayed voltage when you start a code, or when a particular mechanism is run,
this may be indicative of a brown out condition. Other indicators include:

The Driver Hub throwing errors about power to the system

The Driver Hub making a disconnect sound

The voltage on the Driver Hub showing 9 volts or lower when running code

Motors running at lower speeds then what they have been set to run

To remedy this issue check out our instructions on proper battery care.

If the Control Hub SSID is not shown in the list of available Wi-Fi networks, try manually entering
the Control Hub SSID on the Driver Hub to see if that allows you to connect.

If no networks are shown at all, you should reboot the Driver Hub. See
section.

Most Common Issues

https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer&hl=en
https://www.revrobotics.com/rev-31-1302/

If you are still experiencing connection issues, once you have gone through the flowchart and worked on
addressing the potential root of connection issues describe in the list above, start looking for patterns in the
behavior. How often does this behavior appear? Are there certain things that happen around the same time
the disconnects happen? The following list provides some ideas on what sort of patterns you might see:

The Driver Hub connects to Wi-Fi and the Control Hub when a team member takes it home but doesn't
connect consistently at school.

The Driver Hub connects to the Control Hub until you start driving the robot around.

Correlation does not equal causation of an event but is useful to take note of for further
troubleshooting

Foam Tape Installation

1. Cut foam tape into small pieces, approximately 2 inches or less long. The foam tape recommended is
approximately 1/4 inch or less wide and 1/16 inch or less thick

2. Foam tape will be applied inside the battery case, opposite battery contacts and below the ridge that the
battery door sits within.

3. Stick foam strip in the middle, both side to side and top to bottom, of the vertical surface opposite the
battery contact switch.

4. Press foam strip down firmly to make sure it sticks.

5.1 Insert battery by inserting top of battery towards foam, and gently squeezing battery towards foam with
thumb until battery can easily drop into battery case.

5.2 Continue to push the battery down until it is flush in the case.

6. Done

Still Need Assistance?

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

If you encounter any of these issues below, please email support@revrobotics.com

Device freezes on boot, then restarts the boot process in a loop

Device freezes on boot and never gets into the OS, even after a hard reboot

Charging and Power issues persist after multiple battery calibrations

Need help getting the Log Files to send to REV Support? See for more
information.

Downloading Log File

Expansion Hub Troubleshooting

The following sections, " ," provides common indicators of
issues seen in the Expansion Hub. Think about what the potential indicators your Hub is currently exhibiting
and consider the following questions:

Common Indicators and their Solution Steps

Did you perform a firmware update before the Hub began to have issues?

What is the behavior of the Status LED on the Expansion Hub?

Is the Driver Station showing an error message 'Cant find the Expansion Hub Portal"?

Did the Robot Controller app open when you plugged in the RC phone and gave power to the Hub?

Are you experiencing issues with communication between a primary and secondary Hub?

If a path in this guide does not resolve the issue please contact REV Robotics Support at
support@revrobotics.com

Common Indicators and their Solution Steps

The firmware update failed and the Hub is unresponsive

Try a Firmware Update

The LED on the Expansion Hub is not lighting up

Try a Firmware Update

The LED is still not lighting up

The Hub is not being recognized or communicating with the phones

Try doing the Hub Startup Procedure

There are issues seeing a secondary Expansion Hub

Expansion Hubs purchased AFTER December 2021 no longer include an internal IMU

Issues Seeing a Secondary Expansion Hub

Troubleshooting: Connecting a second Expansion HubTroubleshooting: Connecting a second Expansion Hub

https://www.youtube.com/watch?v=f1ev2Ap9Ywo

The steps below utilize information provided in the article. Use this article to help
you navigate as you run through the troubleshooting flowchart.

Adding an Expansion Hub

Adding an
Expansion Hub

Check that the secondary
Expansion Hub is receiving
power from the leader Hub.
The Hubs should be
connected via the XT30
power connection

No Output

Blue or Green

What color is the
Status LED on the

Secondary
Expansion Hub?

No

Yes

Are the two
Hubs

connected via
RS485?

Connect the Hubs via the
RS485 port on each Hub.

Create a new
configuration file and

No

Yes

Is your Robot
Controller

Application up
to date?

Update your Robot
Controller Application.

Expansion HubControl Hub

Is your leader
Hub a Control

Hub or an
Expansion

Hub?

New File Created

configure the robot

Yes

No

Is the
secondary Hub

visible in the
configuration

portal?

Use the new
configuration file and
begin coding your robot.

Its possible both Expansion
Hubs have the same
address. See the section
below for information on
changing the Expansion
Hub address.

Reconfirm that the all of the
previous questions are
correct and contact REV
Support.

To update a Robot Controller check out the article on .Updating the Robot Controller Application

If you are attempting to connect two Expansion Hubs together please confirm that the first Expansion Hub is
connected to the Robot Controller. From there change the Expansion Hub address. For information on how
to change the Expansion Hub address check out the article. FTC Wiki Using a Second Expansion Hub

Firmware Update

Use the to . REV Hardware Client update the Expansion Hub

USB Serial Converter Check

1. Plug your Expansion Hub into a Windows PC

2. Open the Device Manager in Settings

3. Click the arrow next to Universal Serial Bus Controllers

4. Find USB Serial Converter under the menu

5. If this is not present there maybe a larger issue with your hub. Email support@revrobotics.com with
details of the steps you have taken so far,and any order numbers for the Expansion Hub (if you have
them)

If you are using a Mac you can use System Information in Lion or later (or System Profiler in
Snow Leopard and earlier versions of Mac OS) in Spotlight (press ⌘ and Space). The program
is in /Applications/Utilities and is the tool to see the connected USB devices and other hardware
details.

https://github.com/FIRST-Tech-Challenge/FtcRobotController/wiki/Using-Two-Expansion-Hubs#checking-the-address-of-an-expansion-hub
https://docs.revrobotics.com/rev-hardware-client/
https://docs.revrobotics.com/rev-hardware-client/expansion-hub/updating-expansion-hub

Hub Startup Procedures

1. Unplug the USB from your RC phone

2. Power off the main robot switch (turn off 12V power from the Expansion Hub(s))

3. Wait a few seconds

4. Turn on the Main Robot Switch (supply 12V power to the Expansion Hub(s))

5. On your RC phone, press the square button and the swipe to close the FTC RC app

6. Plug your RC phone into the USB-- the FTC app should automatically open

1. If the app doesn't automatically open you do not have a good connection from the Expansion Hub to
the Phone. Check your cables first, followed by the micro and mini USB connections.

2. Consider using some form of strain relief (like the or one of the many 3d
printable options available on places like Thingiverse) to keep the USB-mini port from being
damaged.

 REV USB Retention Mount

If the issues persists after applying the Retention Mount try running through the
procedure.

Firmware Update

Still Need Assistance?

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

Need help getting the Log Files to send to REV Support? See for more
information.

Downloading Log File

Status LED Blink Codes

The RGB LED located on the Control Hub () and Expansion Hub () near the
RS485 ports and on the bottom of the Driver Hub () provide user feedback regarding the status
of the Hub. Below is a Table of the Blink Codes.

REV-31-1595 REV-31-1153
REV-31-1956

Control Hub

All Control Hub Blink Codes assume the latest is running on the
device

Control Hub Operating System

http://www.revrobotics.com/rev-41-1214/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Robot Controller Application 6.0 or Higher

If a Control Hub is running Robot Controller Application 5.5 or lower the LED Blink Codes for the Hub will be
the same as an . Expansion Hub running Firmware Version 1.7.0 or higher

LED Status LED Description When Hub Status

Solid Blue At Boot

Control Hub has
power; Battery is >7V
and is waiting to
initialize
communications.

Solid Blue Anytime

Hub is waiting for
communication with
the Driver Station Hos
Control Hub has
power; Battery is >7V

Solid Green Anytime

Hub has power and
active communication
with the Android
Platform.

Blinking Blue Anytime

Keep alive has timed
out. Fault will clear
when communication
resumes.

Blinking Orange Anytime

Battery Voltage is
lower than 7V. Either
the 12V battery needs
to be charged, or the
Expansion Hub is
running on USB powe
only. This fault will
clear when battery
voltage is raised abov
7V.
This will not be
overwritten by the kee
alive timeout pattern.

 Blinking Magenta ​ ​During Wi-Fi Reset

Control Hub changed
Wi-Fi Band to 5GHz
after pressing the
button

Control Hub changed

 Blinking Yellow ​ ​During Wi-Fi Reset Wi-Fi Band to 2.4GHz
after pressing the
button

Driver Hub

All Driver Hub Blink Codes assume the latest is running on the deviceDriver Hub Software

LED A

LED Status LED Description Hub Status

Blinking White
Operating System is
Booting

Blinking Green General Activity

LED B

LED Status LED Description Hub Status

Solid Green Device is on

Battery Status LED

LED Status LED Description Hub Status

Blinking Red Battery Charging

Solid Red Battery Charged

Expansion Hub

Firmware Version 1.7.0 or Higher

LED Status LED Description When Hub Status

Solid Blue At Boot
Hub has power;
Battery is >7V and is
waiting to initialize
communications.

Solid Blue Anytime

Hub is waiting for
communication with
the Robot Controller.
Hub has power;
Battery is >7V.

Solid Green with one
or more blue blinks
every
~5 Seconds

Anytime

Hub has power and
active communication
with the Android
Platform. The number
of blue blinks is the
same as the
Expansion Hub’s
address.
The factory default
address is 2 (

).

Blinking Blue Anytime

Keep alive has timed
out. Fault will clear
when communication
resumes.

Blinking Orange Anytime

Battery Voltage is
lower than 7V. Either
the 12V battery needs
to be charged, or the
Expansion Hub is
running on USB powe
only. This fault will
clear when battery
voltage is raised abov
7V.
This will not be
overwritten by the kee
alive timeout pattern.

System Overview

Control Hub Specifications

The REV Robotics Control Hub () is an affordable all in one educational robotics controller
that provides the interfaces required for building robots, as well as other mechatronics, with multiple
programming language options. The Control Hub was designed and built as an easy to use, dependable,
and durable device for use in classroom and the competition. It features an Android operating system, built-
in dual band Wi-Fi (802.11 ac/b/g/n/w), and a mature software package designed for both basic and
advanced use cases. When the Control Hub software is updated with new features, the controller can
receive a "field upgrade," through an update process that is fast and simple.

REV-31-1595

The Control Hub is an approved device for use in FIRST® Global and FIRST Tech Challenge.

Port Label Qty Connector Description

Battery 2 ​ ​XT-30

Connect one 12V
NiMh battery, add an
Expansion Hub with
second port

Motor 4 ​ ​JST VH, 2-pin Motor power output

Encoder 4 ​ ​JST PH, 4-pin
Quadrature encoder
input

Servo 6 0.1” Header
Extended range 5V
servo output

+5V Power 2 0.1” Header
Power for auxiliary
device(s)

Analog 4 ​ ​JST PH, 4-pin
Analog input with two
channels per
connector.

Digital 8 ​ ​JST PH, 4-pin
Digital Input/Output
with two channels pe
connector

Four separate I2C

https://www.revrobotics.com/rev-31-1595/

I2C 4 ​ ​JST PH, 4-pin busses

RS485 2 ​ ​JST PH, 3-pin
Use this serial
communication port to
add an Expansion Hu

UART 2 ​ ​JST PH, 3-pin Debugging only

USB C 1 USB C
Connect directly to th
Control Hub via PC,
USB 2.0

USB 2.0 1 USB A

Connect USB camera
and other USB
peripherals to the
Control Hub

USB 3.0 1 USB A

Connect USB camera
and other USB
peripherals to the
Control Hub

HDMI 1 HDMI A Supports 4k @ 60Hz

Specifications

The following tables provide the operating and mechanical specifications for the Control Hub.

General Specifications

Feature type Description

Processor(s)
RK3328 Quad-core ARM® Cortex-A53
Texas Instruments ARM® Cortex®-M4

Memory 1GB LPDDR3

Storage† 8GB eMMC 4.51

Wireless
802.11 ac/b/g/n/w Wi-Fi; Dual Band 2.4 & 5 GHz
Bluetooth 4.1

Graphics‡
GPU - ARM® Mali 450MP4
HDMI 2.0 support for 4k @ 60Hz

​

†
Supports expandable storage through the SD Car
slot

‡
Display graphics supported through an external
display over HDMI

DO NOT exceed the absolute maximum electrical specifications. Doing so will cause permanent
damage to the Control Hub and will void the warranty.

Input Power Specifications

Parameter Min Typ Max Units

Operating voltage

range ()V ​IN
8 12 15 V

Absolute
maximum supply
voltage

- - 15 V

Motor Port Specifications

Parameter Min Typ Max Units

Continuous
output current †

- - 10 A

Absolute
maximum output
current ‡

- - 20 A

​

†
Exceeding the continuous current maximum
depends on many thermal factors. The outputs wi
self protect once they approach their thermal limit.

‡
Maximum current is ultimately limited by the in-line
battery fuse.

Encoder Port Specifications

Parameter Min Typ Max Units

Encoder port
input voltage

0 - 3.3 V

Encoder port
supply voltage

- - 3.3 V

Encoder port total
supply current

- - 500 mA

See for more information on encoders and using the encoder ports. For using
non-REV motor encoders see for more details.

Sensors - Encoders
Using 5V Sensors - Encoders

Digital Port Specifications

Parameter Min Typ Max Units

Digital port input
voltage

0 - 3.3 V

Digital port
supply voltage

- - 3.3 V

Digital port total
supply current

- - 1 A

See for more information on using the digital ports. See for
information on using 5V logic level devices with the digital ports.

Sensors - Digital Using 5V Sensors

Analog Port Specifications

Parameter Min Typ Max Units

Analog port input
voltage range †

0 - 5 V

Analog port
supply voltage

- - 3.3 V

Analog port total
supply current

- - 500 mA

​

The analog input will accept up to 5V. When using

† 5V analog sensors, a custom wiring harness is
needed to provide 5V of power for the sensor as
the power pin provides 3.3V.

See for more information on using the analog ports.Sensors - Analog

I2C Port Specifications

Parameter Min Typ Max Units

I2C port input
voltage range

0 - 3.3 V

I2C port supply
voltage

- - 3.3 V

I2C port total
supply current

- - 500 mA

Bus speed - 100/400 - kHz

See for more information on using the I2C ports. See for
information on using 5V logic level devices with the I2C ports.

Sensors - I2C Using 5V Sensors

Servo Port Specifications

Parameter Min Typ Max Units

Servo output
signal voltage

0 - 5 V

Servo port supply
voltage

- 5 - V

Servo port pair
total supply
current †

- - 2 A

Absolute
maximum total
supply current ‡

- - 5 A

Servo port output
pulse range

500 - 2500 μs

​

†
Total supply is shared across pairs of ports (0-1, 2
3, 4-5)

‡
The 5A total supply current for all servo ports and
+5V power ports is shared.

+5V Power Port Specifications

Parameter Min Typ Max Units

+5V power port
output voltage - 5 - V

+5V power port
pair total supply
current †

- - 2 A

Absolute
maximum total
supply current ‡

- - 5 A

​

† Total supply current is shared across both ports

‡
The 5A total supply current for all servo ports and
+5V power ports is shared.

Mechanical Specifications

Parameter Min Typ Max Units

Body length - 103 - mm

Body width - 143 - mm

Body height - 29.5 - mm

Weight - 209 - g

Mounting hole
pitch

- 16 - mm

Expansion Hub Specifications

The REV Robotics Expansion Hub () is a low-cost educational device that can communicate
with any computer (commonly the or an Android Phone) to provide the interfaces
required for building robots and other mechatronics. The Expansion Hub was purpose built to stand up to
the rigors of the classroom and competition field. It features a mature firmware designed for basic and
advanced use cases with the ability to be field upgraded in the future.

REV-31-1153
REV Robotics Control Hub

The IO ports of the Expansion Hub are identical in specification to the Control Hub. Within this
documentation, many sections may refer to the Control Hub, but the connections are the same for the
Expansion Hub.

The REV Robotics Expansion Hub is an approved device for use in the FIRST Tech Challenge and FIRST
Global.

Port Label Qty Connector Description

Battery 2 XT30

Connect one 12V
NiMh battery, add an
Expansion Hub with
second port

Motor 4 JST VH, 2-pin Motor power output

Encoder 4 JST PH, 4-pin
Quadrature encoder
input

Servo 6 0.1” Header
Extended range 5V
servo output (500-
2500ms)

5V Aux Power 2 0.1” Header Auxiliary device 5V/2

Analog input 0-5.0V
measurement range
with two channels pe

https://www.revrobotics.com/rev-31-1153/

Analog 4 JST PH, 4-pin connector. 3.3V
provided on the
connector power pin.

Digital 8 JST PH, 4-pin
Digital Input/Output
with two channels pe
connector

I2C 4 JST PH, 4-pin

Four separate I2C
busses,
100kHz/400kHz bus
speed

RS485 2 JST PH, 3-pin
Serial communication
port to add a Hub
(Control or Expansion

UART 2 JST PH, 3-pin Debugging only

MINI USB 1 USB Mini-B
Connect directly to th
Robot Controller
Android device or PC

Specifications

The following tables provide the operating and mechanical specifications for the Expansion Hub.

DO NOT exceed the absolute maximum electrical specifications. Doing so will cause permanent
damage to the Expansion Hub and will void the warranty.

Input Power Specifications

Parameter Min Typ Max Units

Operating voltage

range ()V ​IN
8 12 15 V

Absolute
maximum supply
voltage

- - 15 V

Motor Port Specifications

Parameter Min Typ Max Units

Continuous
output current †

- - 10 A

Absolute
maximum output
current ‡

- - 20 A

​

†
Exceeding the continuous current maximum
depends on many thermal factors. The outputs wi
self protect once they approach their thermal limit.

‡
Maximum current is ultimately limited by the in-line
battery fuse.

Encoder Port Specifications

Parameter Min Typ Max Units

Encoder port
input voltage

0 - 3.3 V

Encoder port
supply voltage

- - 3.3 V

Encoder port total
supply current

- - 500 mA

See for more information on encoders and using the encoder ports. For using
non-REV motor encoders see for more details.

Sensors - Encoders
Using 3rd Party Sensors - Encoders

Digital Port Specifications

Parameter Min Typ Max Units

Digital port input
voltage

0 - 3.3 V

Digital port
supply voltage

- - 3.3 V

Digital port total
supply current

- - 1 A

See for more information on using the digital ports. See for
information on using 5V logic level devices with the digital ports.

Sensors - Digital Using 5V Sensors

Analog Port Specifications

Parameter Min Typ Max Units

Analog port input
voltage range †

0 - 5 V

Analog port
supply voltage

- - 3.3 V

Analog port total
supply current

- - 500 mA

​

†

The analog input will accept up to 5V. When using
5V analog sensors, a custom wiring harness is
needed to provide 5V of power for the sensor as
the power pin provides 3.3V.

See for more information on using the analog ports.Sensors - Analog

I2C Port Specifications

Parameter Min Typ Max Units

I2C port input
voltage range

0 - 3.3 V

I2C port supply
voltage

- - 3.3 V

I2C port total
supply current

- - 500 mA

Bus speed - 100/400 - kHz

I2C pull-up
resistor

- 2.49 - kΩ

Expansion Hubs purchased AFTER December 2021 no longer include an internal IMU

See for more information on using the I2C ports. See for
information on using 5V logic level devices with the I2C ports.

Sensors - I2C Using 5V Sensors

Servo Port Specifications

Parameter Min Typ Max Units

Servo output
signal voltage

0 - 5 V

Servo port supply
voltage

- 5 - V

Servo port pair
total supply
current †

- - 2 A

Absolute
maximum total
supply current ‡

- - 5 A

Servo port output
pulse range

500 - 2500 μs

​

†
Total supply is shared across pairs of ports (0-1, 2
3, 4-5)

‡
The 5A total supply current for all servo ports and
+5V power ports is shared.

+5V Power Port Specifications

Parameter Min Typ Max Units

+5V power port
output voltage

- 5 - V

+5V power port
pair total supply
current †

- - 2 A

Absolute
maximum total
supply current ‡

- - 5 A

​

† Total supply current is shared across both ports

‡
The 5A total supply current for all servo ports and
+5V power ports is shared.

Mechanical Specifications

Parameter Min Typ Max Units

Body length - 103 - mm

Body width - 143 - mm

Body height - 29.5 - mm

Weight - 209 - g

Mounting hole
pitch

- 16 - mm

Driver Hub Specifications

The REV Robotics Driver Hub () is a compact mobile computing device designed for
interfacing with the Control Hub (REV-31-1595). The Driver Hub was designed and built as an easy to use,
dependable, and durable device for use in classroom and the competition. It features an Android operating
system, built-in dual band Wi-Fi (802.11 ac/b/g/n/w), and support for many off-the-shelf gamepads and HID
devices connected through built-in USB ports. When the Driver Hub software is updated with new features,
the device can receive a "field upgrade," through a fast and simple update through the

.

REV-31-1596

REV Hardware
Client

The Driver Hub is an approved device for use in FIRST® Global and FIRST Tech Challenge.

https://www.revrobotics.com/rev-31-1596

Label Qty Interface Description

Power 1 Button
Turns the device on
and off

USB C 1 USB C

Connect directly to th
Driver Hub via PC,
USB 2.0
Supports fast chargin
the Driver Hub over
USB PD

USB 2.0 3 USB A

Connect USB
controllers and other
HID devices to the
Driver Hub

Ethernet 1 RJ45
10/100 base-T

Supports 12V DC
passive POE

Specifications

The following tables provide the mechanical specifications for the Driver Hub.

General Specifications

General Specifications

Feature type Description

Processor RKPX30 Quad-core ARM A35

Memory 1GB LPDDR3

Storage† 8GB eMMC 4.51

Wireless
802.11 ac/b/g/n/w Wi-Fi; Dual Band 2.4 & 5 GHz
Bluetooth 4.1

Graphics ARM® Mali 450MP4

​

†
Supports expandable storage through the SD Car
slot

Mechanical Specifications

Parameter Min Typ Max Units

Body length - 3.375 - in

Body width - 5.25 - in

Body height - 1.0 - in

Weight - 9.8 - oz

Mounting hole
pitch

- 16 - mm

Screen size
(diagonal)

​ 5 ​ in

Screen resolution ​ 800 x 600 ​ px

Port Pinouts

Protection Features

The Control () and Expansion Hub () were designed with a number of protection
features built into the device. These include the following:

REV-31-1595 REV-31-1153

Reverse battery input protection

Electrostatic discharge (ESD) protection on all connections

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Over-current protection
 on all power buses

Digital I/O bus

I2C bus

Analog bus

USB

Servo bus per pair (0-1, 2-3, 4-5)

Encoder bus

Over-current monitoring for individual Motor Channels

Keyed and locking connectors

Fail-safe mode at communication loss

Cables and Connectors

The REV Robotics Control Hub () connector selection provides a robust high-density solution
for the user. All connectors are keyed and locking except for the Servo, 5V auxiliary power, HDMI , and USB
ports.

REV-31-1595

XT-30 - Power Cable

JST VH - Motor Power

JST PH - Sensors and RS485

XT-30 - Power Cable

The XT30 connector is used for connecting a battery and powering a Control/Expansion Hub. Each
Control/Expansion Hub has both a Male and Female XT30 connector, as determined from the metal
contacts, not the plastic housing. While either connector can provide power to the hub, it is the convention to
use the male connector for "power in" to the hub, and to use the female connector for "power out" to a
connected secondary device, like an Expansion Hub or XT30 Power Distribution Block, from the single

https://www.revrobotics.com/rev-31-1595/

b tt
Most teams will want to use pre-made cables which can be conveniently sourced from the

. However, teams can also make their own cables. These connectors are solder-cup style, do not
require any crimping tools, and are available from various online vendors. Because these connectors are an
open design, they are manufactured by a variety of sources and quality may vary. AMASS branded
connectors are recommended, and are what is used on REV products, but there are many other quality
vendors available.

REV Robotics
website

Table 1: Premade XT-30 Cables and Accessories

Cable Type Length REV Robotics Part Number

XT-30 Male - XT-30 Female 30 cm ​ ​REV-31-1392

XT-30 Male - XT-30 Female 50 cm ​ ​REV-31-1394

XT-30 Female - Tamiya 8 cm ​ ​REV-31-1382

XT-30 Female - Anderson
Power Pole Style

8 cm ​ ​REV-31-1385

Power Switch Cable (XT30 Male
– XT30 Female)

12 cm ​ ​REV-31-1387

XT30 Connector Pack – 5 Pairs - ​ ​REV-31-1399

JST VH - Motor Power

Motor Power connections on the Control Hub () use the JST VH style connector. This
connector is keyed and locking with a small latch, seen below, which must be depressed to release the
cable.

REV-31-1595

Figure 1: How to Use a JST VH Cable

REV Robotics recommends, in most cases, that teams use pre-made cables because crimp quality is better
when made using industrial tooling. These cables can be purchased directly from the
or through other online vendors.

REV Robotics website

https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/rev-31-1382/
https://www.revrobotics.com/rev-31-1385/
https://www.revrobotics.com/rev-31-1387/
https://www.revrobotics.com/rev-31-1399/
https://www.revrobotics.com/rev-31-1595/

Premade JST VH Cables and Accessories

Cable/Accessory Pins Length
REV Robotics Part
Number

JST VH 2-Pin Motor
Cable

2 pins 30 cm ​ ​REV-31-1412

JST VH 2-Pin Motor
Cable

2 pins 50 cm ​ ​REV-31-1413

JST VH 2-Pin Motor
Cable

2 pins 100 cm ​ ​REV-31-1526

Anderson to JST VH
Cable

2 pins 12 cm ​ ​REV-31-1381

JST VH 2-pin Joiner
Board

2 pins - ​ ​REV-31-1429

For teams that want to try crimping their own cables, or to find more information about the connectors, Table
3 lists the appropriate part numbers.

Connector Specifications

10A Continuous Current (16AWG)

3.96mm Pitch

Accepts 22-16AWG Wire

JST VH Connector Part Number Reference

Manufacturer Part Number DigiKey Part Number

Contact, JST VH, 18-22AWG SVH-21T-P1.1 ​ ​455-1133-1-ND

Contact, JST VH, 16-20AWG SVH-41T-P1.1 ​ ​455-1319-1-ND

Housing, JST VH, 2-pin VHR-2N ​ ​455-1183-ND

Header, JST VH, 2-pin, Top
Entry

B2P-VH ​ ​455-1639-ND

Header, JST VH, 2-pin, Side
Entry

B2PS-VH ​ ​455-1648-ND

JST PH - Sensors and RS485

https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/rev-31-1381/
https://www.revrobotics.com/rev-31-1429/
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SVH-21T-P1.1/455-1133-1-ND/527367
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SVH-41T-P1.1/455-1319-1-ND/608888
https://www.digikey.com/product-detail/en/jst-sales-america-inc/VHR-2N/455-1183-ND/608624
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B2P-VH(LF)(SN)/455-1639-ND/926547
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B2PS-VH(LF)(SN)/455-1648-ND/926555

The JST PH style connector is used for motor encoder, analog, digital, I2C, RS485, and UART connections
on the Control Hub and Expansion Hub. These are all 4-pin connections except for the RS485 and UART
which are 3 pin. The connectors are keyed (they only insert in one orientation) and are friction locking.
Below the keying feature aligned with the cable is shown.

REV Robotics recommends in most cases that teams use pre-made cables because the quality of the crimp
is better when made using industrial tooling. These cables can be bought directly from the REV Robotics
Website or through other online vendors.

Premade 4-pin JST PH Cables

Cable/Accessory Pins Length
REV Robotics Part
Number

JST PH 4-Pin Sensor
Cable

4 30 cm ​ ​REV-31-1407

JST PH 4-Pin Sensor
Cable

4 50 cm ​ ​REV-31-1408

JST PH 4-Pin Sensor
Cable

4 100 cm ​ ​REV-31-1409

JST PH 4-pin Joiner
Board

4 ​ ​ ​REV-31-1388

Premade 3-pin JST PH Cables

Cable Pins Length
REV Robotics Part
Number

JST PH 3-pin
Communication Cable

3 30 cm ​ ​REV-31-1417

JST PH 3-pin
Communication Cable

3 50 cm ​ ​REV-31-1418

https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/rev-31-1388/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/

JST PH 3-pin
Communication Cable

3 100 cm ​ ​REV-31-1565

For teams that want to try crimping their own cables, or to find more information about the connectors, the
table below lists the appropriate part numbers.

Connector Specifications

2A continuous current (24AWG)

2.0mm pitch

Accepts 32-24AWG wire

JST PH Connector Part Number Reference

Connector Parts
Manufacturer Part
Number

Vendor Part Number

Contact, JST PH, 30-
24AWG

SPH-002T-P0.5S DigiKey ​ ​455-1127-1-ND

Contact, JST PH, 28-
24AWG

SPH-002T-P0.5L DigiKey ​ ​455-2148-1-ND

Housing, JST PH, 4-
pin

PHR-4 DigiKey ​ ​455-1164-ND

Header, JST PH, 4-pin,
Top Entry

B4B-PH-K-S DigiKey ​ ​455-1706-ND

Header, JST PH, 4-pin,
Side Entry

S4B-PH-K-S DigiKey ​ ​455-1721-ND

Housing, JST PH, 3-
pin

PHR-3 DigiKey ​ ​455-1126-ND

Header, JST PH, 3-pin,
Top Entry

B3B-PH-K-S DigiKey ​ ​455-1705-ND

Header, JST PH, 3-pin,
Side Entry

S3B-PH-K-S DigiKey ​ ​455-1720-ND

Recommended
Crimping Tool

IWISS SN-2549 Amazon ​ ​SN-2549

Integrated Sensors

The REV Robotics Control Hub () and Expansion Hub () integrate a number of REV-31-1595 REV-31-1153

https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SPH-002T-P0.5S/455-1127-1-ND/527358
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SPH-002T-P0.5L/455-2148-1-ND/1634657
https://www.digikey.com/product-detail/en/jst-sales-america-inc/PHR-4/455-1164-ND/608606
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B4B-PH-K-S(LF)(SN)/455-1706-ND/926613
https://www.digikey.com/product-detail/en/jst-sales-america-inc/S4B-PH-K-S(LF)(SN)/455-1721-ND/926628
https://www.digikey.com/product-detail/en/jst-sales-america-inc/PHR-3/455-1126-ND/527357
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B3B-PH-K-S(LF)(SN)/455-1705-ND/926612
https://www.digikey.com/product-detail/en/jst-sales-america-inc/S3B-PH-K-S(LF)(SN)/455-1720-ND/926627
https://www.amazon.com/IWISS-Crimping-AWG28-18-Ratcheting-Connector/dp/B01N4L8QMW/ref=sr_1_2?ie=UTF8&qid=1546882885&sr=8-2&keywords=sn-2549
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

feedback sensors. Some of these are user accessible in the latest FTC Android Studio SDK, but others are
not yet directly user accessible. These sensors are in some cases also used by the Control Hub and
Expansion Hub for internal safety monitoring.

Battery Voltage Monitoring [Accessible]

Integrated 9-axis IMU [Accessible]

Bosch BNO055 9-axis absolute orientation sensor

Internally connected to I2C port 0 and configured to address 0x28

Current Monitoring

Battery [Accessible]

I2C Bus [Accessible]

Digital Power Bus [Accessible]

Servo Power Bus [Not Accessible]

Per Motor Channel Current Monitoring [Accessible]

Dimensions and Important Component Locations

IMU Location

When using the Control Hub () or Expansion Hub () please note the location of
the IMU in the graphic below. The Hub’s orientation may impact the values received from the embedded
IMU.

REV-31-1595 REV-31-1153

Wi-Fi Radio Location

The Control Hub has an embedded Wi-Fi radio for wireless communication. The antenna is located towards
the top of the Control Hub itself. The graphic below shows the location of antenna.

DO NOT put a battery or other Wi-Fi blocking object on top of the Control Hub. This can lead to
higher ping times for communication between the Control Hub and the Driver Station.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Updating and Managing

Managing Wi-Fi on the Control Hub

The Control Hub creates a Wi-Fi access point to connect a Driver Station device or laptop to the Control
Hub for programming and operation. Settings for the Control Hub access point are managed through the
Robot Controller Console or the User Button on the Control Hub.

Before making changes to the Control Hub's Wi-Fi network checking what Wi-Fi bands are supported by the
devices being used is important to ensure they will work as expected. Below are the Android Devices that
are officially supported:

Supported Android Devices and Wi-Fi Band Capabilities

Android Device Wi-Fi Band

REV Driver Hub ()REV-31-1596 2.4 GHz & 5 GHz (Dual Band)

Moto G (2nd generation) 2.4 GHz (Single Band)

Moto G (3rd generation) 2.4 GHz (Single Band)

Moto G (4th generation) 2.4 GHz (Single Band)

Moto G5 2.4 GHz & 5 GHz (Dual Band)

Moto G5 Plus 2.4 GHz & 5 GHz (Dual Band)

Moto E4 2.4 GHz & 5 GHz (Dual Band)

Moto E5 2.4 GHz & 5 GHz (Dual Band)

Moto E5 Play 2.4 GHz & 5 GHz (Dual Band)

The following page is split into two sections. The first will cover how to access the Wi-Fi Settings through the
Robot Controller Console. It is recommended to use the as it will allow the user to
access the Wi-Fi settings over a wired connection. The second will run through the steps for using the
Control Hub's User Button to preform a Wi-Fi reset or Wi-Fi band change.

REV Hardware Client

If you run into any problems trying to use the Hardware Client or when resetting the Wi-Fi, please
contact support@revrobotics.com

https://www.revrobotics.com/rev-31-1596/

Using the Robot Controller Console

The Robot Controller Console gives access to the Wi-Fi settings of the Control Hub. Below are the steps to
access the Robot Controller Console through the and the application
for updating Wi-Fi settings.

REV Hardware Client Driver Station

REV Hardware Client

The REV Hardware Client allows teams access to the Hub's Wi-Fi Settings information through a wired
connection. The information is visible through the main page of the Robot Control Console and updated
through the Program and Manage tab.

 and install on a Windows PC. Skip this step if
completed already.
Download the latest version of the REV Hardware Client

Steps ​

Power on the Control Hub, by plugging the 12V
Slim Battery () into the XT30
connector labeled “BATTERY” on the Control Hub.

REV-31-1302 ​ ​

The Control Hub is ready to connect with a PC
when the LED turns green. Note: the light blinks
blue every ~5 seconds to indicate that the Control
Hub is healthy.

​ ​

Plug the Control Hub into the PC using a USB-A to
USB-C Cable ()REV-11-1232

​

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the UI
under the Hardware Tab. Select the Control Hub.

https://github.com/REVrobotics/REV-Software-Binaries/releases/download/rhc-1.4.2/REV-Hardware-Client-Setup-1.4.2.exe
https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-11-1232/

After selecting the Connected Hardware the Update tab will pop up. Select the Program and Manage tab.
This will take you to the Robot Controller Console build into the REV Hardware Client.

Once in the Robot Controller Console, there are two options.

If just the Wi-Fi Access Point name and password need to be found, they can be seen on the main page of
the Robot Controller Console.

If any of the Wi-Fi Access Point information needs to be changed, select the menu button in the upper right-
hand corner of the page, indicated in the image below.

When the menu opens, select Manage.

The Manage page is where the Wi-Fi Access Point information for the Hub can be viewed and changed. In
the image below, the Hub's Wi-Fi name, password, band, and channel can be changed. Editing these
settings can help when the Hub is not showing up as a potential connection point from a computer or Driver
Station device.

Once changes have been made select Apply Wi-Fi Settings.

Once updates are made to the network reconnection to the new Wi-Fi network is needed. When
accessing the REV Hardware Client via a USB connection the Control Hub will stay connected to
the REV Hardware Client. Rescanning for devices is necessary for changes to show in the
Hardware Client.

Driver Station Application

The Manage page of the Robot Controller Console can also be accessed via the Driver Station Application.
This is helpful in event environments, where Field Technical Staff may request that you change Wi-Fi bands
or channels to mitigate disconnections.

Select the three horizontal dots in the upright corned of the Driver Station Application

In the drop down menu select Program & Manage.

Once in the Robot Controller Console, there are two options.

If just the Wi-Fi Access Point name and password need to be found, they can be seen on the main page of
the Robot Controller Console.

If any of the Wi-Fi Access Point information needs to be changed, select the menu button in the upper right-
hand corner of the page, indicated in the image below.

When the menu opens, select Manage.

The Manage page is where the Wi-Fi Access Point information for the Hub can be viewed and changed. In
the image below, the Hub's Wi-Fi name, password, band, and channel can be changed.

Once changes have been made select Apply Wi-Fi Settings.

You will need to reconnect to the new Wi-Fi network after changing the name/and or password.

Using the User Button

The Control Hub has a user button underneath the LED on the right side of the device. This button allows for
a or currently being used on the Control Hub.Wi-Fi reset changing the Wi-Fi band

Wi-Fi Reset

If you are unable to connect to the Control Hub's Wi-Fi after switching to the 5 GHz band, you can perform a

Wi-Fi factory reset. The Wi-Fi network name and password will be reset to their default values, and the Wi-Fi
band will be set to 2.4 GHz. To perform a Wi-Fi reset, please follow the steps below.

The Wi-Fi reset can take several minutes to complete.

Step Image

Press and hold the button on the front of the Control
Hub.

​ ​

While pressing the button, power on the Control
Hub.

​ ​

Release button when the Control Hub LED begins
to flash a multitude of colors. When the Control Hub
flashes Blue then Green it has completed the reset
and is ready to connect.

​

When the Control Hub flashes Blue then Green it has completed the reset and is ready to
connect. The Wi-Fi network will reset back to the default name and password.

Changing Wi-Fi Band

When running version 1.1.2 or later of the Operating System, the Control Hub can switch between the
2.4GHz and 5GHz Wi-Fi bands without access to the REV Hardware Client or the Robot Controller
Console. This will only change the Wi-Fi band. When switching to a Wi-Fi band this way, the most recent
channel selected on that band will be used (defaulting to auto).

Step Image

While pressing the button, power on the Control
Hub.

​ ​

Press and hold the button on the front of the Control
Hub after the Control Hub has fully booted (LED is
solid green)

​ ​

SERVO

AN
AL

OG
0·

1
2·3

0
1

2
3

4
2

I2C

MOTOR

UART

0 1 2 3 4 5

ENCODER

+5V POWER

0·
1

2·3
4·5

6·7
DI

GI
TA

L

RS485

BATTERY

1
2

3
0

CONTROL
HUB

PROUD SUPPORTER OF

Release button when the Control Hub LED flashes
MAGENTA or YELLOW.

​

The Control Hub's LED blinks magenta when the band is switched to 5 GHz and yellow when the
band is switched to 2.4 GHz.

REV Hardware Client

The REV Hardware Client is software designed to make managing REV devices easier for the user. This
Client automatically detects connected device(s), downloads the latest software for those device(s), and
allows for seamless updating of the device(s).

For more information on the .REV Hardware Client, see the User's Manual

Latest REV Hardware Client - Version 1.4.3

​ ​​ Download Latest REV Hardware Client

Feature Summary

Automatically detect supported devices when connected via USB

Connect a REV Control Hub via Wi-Fi

One Click update of all software on connected devices

Pre-download software updates without a connected device

Back up and restore user data from Control Hub

Install and switch between DS and RC applications on Android Devices

Access the Robot Control Console on the Control Hub

Auto-update to latest version of the REV Hardware Client

https://docs.revrobotics.com/rev-hardware-client/
https://github.com/REVrobotics/REV-Software-Binaries/releases/download/rhc-1.4.3/REV-Hardware-Client-Setup-1.4.3.exe

Display devices connected via RS485

Supported Devices

REV Control Hub (REV-31-1595)

REV Expansion Hub (REV-31-1153)

REV Driver Hub (REV-31-1596)

Android Device via ADB

Updating Firmware

Updating the Expansion Hub Firmware

There are two boards within the Control Hub: an Expansion Hub and an Android controller. The Expansion
Hub board built into the Control Hub, facilitates a line of communication between the built in Robot
Controller and the motors, servos, and sensors. In order to improve the quality of the Hubs, REV Robotics
will release firmware updates for the Expansion Hub. When a firmware release occurs, both Control Hub
and Expansion Hub users will need to update their Expansion Hub firmware to the newest version.

There are two ways to update the Expansion Hub Firmware. It is recommended to use the
 as it will automatically notify the user if the Hub's firmware is out of date, download the latest firmware,

and install on the device. The second set of steps utilizes the FIRST Robot Controller Console.

REV Hardware
Client

To use the FIRST Robot Controller Console, the Manage interface is needed to upload the firmware file to
the Control Hub. You can then use a Driver Station that is connected to the Control Hub to initiate the
firmware update. You can download the latest firmware below.

Using the REV Hardware Client

Control Hub

In order to use the REV Hardware Client for firmware updates, the Robot Controller Application
must first be updated to version 5.5. After updating the application you may need to close out of
the REV Hardware Client in order for the firmware update to be available.

Steps ​

Power on the Control Hub, by plugging the 12V
Slim Battery () into the XT30 REV-31-1302

https://www.revrobotics.com/rev-31-1302/

connector labeled “BATTERY” on the Control Hub.

​ ​
The Control Hub is ready to connect with a PC
when the LED turns green.

Note: With Robot Controller Application versions
5.5 and below the light will blink blue every ~5
seconds. Please to 6.0. update

​ ​

SERVO

AN
AL

OG
0·

1
2·3

0
1

2
3

4
2

I2C

MOTOR

UART

0 1 2 3 4 5

ENCODER

+5V POWER

0·
1

2·3
4·5

6·7
DI

GI
TA

L

RS485

BATTERY

1
2

3
0

CONTROL
HUB

PROUD SUPPORTER OF

Plug the Control Hub into the PC using a USB-A to
USB-C Cable ()REV-11-1232

​

Startup the REV Hardware Client. Once the Control Hub is fully connected it will show up on the front page
of the UI under the Hardware Tab. Select the Control Hub.

After selecting the Connected Hardware the Update tab will pop up. Under Hub Firmware select
Download.

https://www.revrobotics.com/rev-11-1232/

Once the firmware has downloaded, select Update.

When the firmware update has completed a status message "Firmware successfully updated" The status for
the Hub Firmware will also change to "Up-to-Date."

Expansion Hub

Updating firmware on the REV Expansion Hub using the REV Hardware ClientUpdating firmware on the REV Expansion Hub using the REV Hardware Client

Plug the Expansion Hub into a PC using a USB-A to Mini USB Cable.

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the UI
under the Hardware Tab. Select the Expansion Hub.

https://www.youtube.com/watch?v=pCNbb050D7c

After selecting the Connected Hardware the Update tab will pop up. Under Hub Firmware select
Download.

Once the firmware has downloaded, select Update.

When the firmware update has completed a status message "Firmware successfully updated" The status for
the Hub Firmware will also change to "Up-to-Date."

Using the Robot Controller Console

Download the Latest REV Hub Firmware - Version 1.08.02

Updating the Expansion Hub Firmware

1. On the Manage page of the Control Hub user interface, press the Select Firmware button to to select the
firmware file that you would like to upload.

An Upload button should appear after you successfully selected a file.

https://www.revrobotics.com/content/sw/REVHubFirmware_1_08_02.bin

2. Press the Upload button to upload the firmware file from your computer to the Control Hub.

The words "Firmware upload complete" should appear once the file has been uploaded successfully.

3. On the Driver Station, touch the three dots in the upper right hand corner to display a pop-up menu.

4. Select Settings from the pop-up menu to display the Settings activity.

5. On the Driver Station, scroll down and select the Advanced Settings item (under the ROBOT
CONTROLLER SETTINGS category).

6. Select the Expansion Hub Firmware Update item on the ADVANCED ROBOT CONTROLLER
SETTINGS activity.

7. If a firmware file that is different from the version currently installed on the Expansion Hub was
successfully uploaded, the Driver Station should display some information about the current firmware
version and the new firmware version. Press the Update Expansion Hub Firmware button to start the updat
process.

8. A progress bar will display while the firmware is being updated. Do not power off the Control
Hub/Expansion Hub during this process. The Driver Station will display a message when the update
process is complete.

Firmware Changelog

Version 1.8.2 (Latest Version)

Improved USB recovery in case of fault event (e.g. ESD fault)

Improved DC motor output linearity

Improved closed-loop control modes
Improved I2C speeds

Minor bug fixes

Download REV Hub Firmware Version 1.8.2

Version 1.7.2

Fixes a bug where encoder counts would occasionally reset.

Download REV Hub Firmware Version 1.7.2

Version 1.7.0

Fixes a bug where some I2C sensors can lock up the bus causing other additional performance issues.

Added new status LED blink code:

Blinking orange indicates the Hub is only powered over USB. In other words, turn on your main
power switch!

Other minor performance tweaks.

Download REV Hub Firmware Version 1.7.0

Version 1.6.0

Original Release

Download REV Hub Firmware Version 1.6.0

Updating Operating System

The Control Hub’s Operating System is field upgradable. New updates are released to incorporate fixes,
improvements, and new features as they are developed.

There are two ways you can update the Operating System. It is recommended to use the
 as it will automatically notify the user if the Hub's Operating System is out of date, download the latest

OS, and install the OS on the device. The second way utilizes the FIRST Robot Controller Console. For
using the FIRST Robot Control Console, you will need to download the latest Operating System.

REV Hardware
Client

Updating the Operating System can take some time depending on the size of the update. Expect
the update to take approximately 5 minutes to fully complete and keep the Control Hub powered
during this process.

The following procedure works with Control Hubs with the part number REV-31-1595. For

https://www.revrobotics.com/content/sw/REVHubFirmware_1_08_02.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_07_02.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_07_00.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_06_00.bin

support using the REV-31-1152 Control Hub v0 please reach out to REV support
(support@revrobotics.com).

Using the REV Hardware Client

Steps ​

Power on the Control Hub, by plugging the 12V
Slim Battery () into the XT30
connector labeled “BATTERY” on the Control Hub
().

REV-31-1302

REV-31-1595

​ ​

The Control Hub is ready to connect with a PC
when the LED turns green.

Note: With Robot Controller Application versions
5.5 and below the light will blink blue every ~5
seconds. Please to 6.0. update

​ ​

SERVO

AN
AL

OG
0·

1
2·3

0
1

2
3

4
2

I2C

MOTOR

UART

0 1 2 3 4 5

ENCODER

+5V POWER

0·
1

2·3
4·5

6·7
DI

GI
TA

L

RS485

BATTERY

1
2

3
0

CONTROL
HUB

PROUD SUPPORTER OF

Plug the Control Hub into the PC using a USB-A to
USB-C Cable ()REV-11-1232

​

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the UI
under the Hardware Tab. Select the Control Hub.

https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-11-1232/

After selecting the Connected Hardware the Update tab will pop up. Under Control Hub Operating
System select Download.

Once the OS has downloaded, select Update.

Keep the Control Hub powered while the upload finishes.

A successful upload will be denoted by the "Update Verification Succeeded" message highlighted in the
image below. Once the upload is successful the install will begin.

Keep the Control Hub powered while the update is installed. The Control Hub will reboot to complete the
update.

When the OS update has completed a status message "Operating System update complete." The status for
the Control Hub Operation System will also change to "Up-to-Date."

When using OS 1.1.2 the Control Hub operates by default on the 5Ghz band. You may need to
update the depending on what you are using.Wi-Fi settings Driver Station device

Using the Robot Controller Console

Download the Latest REV Control Hub Operating System - Version 1.1.3

When updating from OS 1.1.1 or earlier to OS 1.1.2 or later, the Control Hub will switch to the 5
GHz band, regardless of the previous Wi-Fi band setting. Some devices do not support 5 GHz
Wi-Fi, and will not be able to connect to the Control Hub wirelessly while it is using the 5 GHz Wi-
Fi band. To switch to the 2.4 GHz band without needing a computer, see the

.
Changing Wi-Fi

Band section

Step Image

https://github.com/REVrobotics/REV-Software-Binaries/releases/download/chos-1.1.3/ControlHubOS-1.1.3.zip

Power on the Control Hub, by plugging the 12V
Slim Battery () into the XT30
connector labeled “BATTERY” on the Control Hub
().

REV-31-1302

REV-31-1595

​ ​

The Control Hub is ready to connect with a PC
when the LED turns green. Note: the light blinks
blue every ~5 seconds to indicate that the Control
Hub is healthy.

​ ​

Connect to the Control Hub’s Wi-Fi Network. If it is
not renamed, the name will begin with either
“FIRST-“ or “FTC-“.

​ ​

Open a browser and navigate to the FIRST Robot
Controller Console (type 192.168.43.1:8080 in the
navigation bar). Select the Manage Tab.

​ ​

Scroll down to “Update Control Hub Operating
System” and press the “Select Update File” button.

​ ​

Choose the latest version downloaded in Step 1
and press the “Update & Reboot” button.

​ ​

Keep the Control Hub powered while the upload
finishes.

​ ​

https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-31-1595/

Keep the Control Hub powered while the update is
installed. The Control Hub will reboot to complete
the update. ​ ​

When the OS update has completed, the Control
Hub LED will switch from blue, back to its normal
blink pattern.

​ ​

Reconnect your computer to the Control Hub
network and verify that the update was a success.

​ ​

Control Hub Operating System Changelog

When updating from OS 1.1.1 or earlier to OS 1.1.2 or later, the Control Hub will switch to the 5
GHz band, regardless of the previous Wi-Fi band setting. Some devices do not support 5 GHz
Wi-Fi, and will not be able to connect to the Control Hub wirelessly while it is using the 5 GHz Wi-
Fi band. To switch to the 2.4 GHz band without needing a computer, see the

.
Changing Wi-Fi

Band section

Version 1.1.3 - Latest Version

Adds support for new alternative built-in BHI260AP IMU on Control Hub

Improves reliability of the Wi-Fi access point monitoring feature

Version 1.1.2

Adds support for Auto Channel Selection, where the Control Hub will pick the least busy Wi-Fi channel
on the selected Wi-Fi band when it starts up
Migrates all users to Auto Channel Selection on the 5 GHz band by default.

If you find that you are unable to connect to the Control Hub after updating, you should perform a Wi-
Fi Factory Reset by holding down the Control Hub's button as it boots, until you see a colorful light
sequence. That will reset the Wi-Fi settings and switch to the 2.4 GHz Wi-Fi band.

Allows switching the Wi-Fi band between 2.4 GHz and 5 GHz by holding down the Control Hub's button
when the hub has been booted for at least 20 seconds

If version 5.5 or later of the Robot Controller app is installed, the Control Hub's light will blink
magenta when the band is switched to 5 GHz, or yellow when the band is switched to 2.4 GHz.

Continuously monitors the Wi-Fi access point status, and will attempt to restart it if it goes down for any
reason

Continuously monitors the Robot Controller app, and restarts it if it crashes or hangs (requires version
6.1 or later of the Robot Controller app)

Allows the Robot Controller app to access the current Wi-Fi band and channel

Always backs up the FTC Robot Controller app data before it is uninstalled, in order to preserve Wi-Fi
settings

Improves Wi-Fi reliability

Prevents issue that could cause device to boot into recovery mode

Enables use of mouse button in recovery mode

Version 1.1.1

Fixed bug where Wi-Fi access point would sometimes fail to start after an Operating System update

Stopped the FtcAccessPointService UI auto-starting on boot

Allowed Wi-Fi beacon rate to be changed by the FTC Robot Controller app

Version 1.1.0

Improved reliability of making changes to Wi-Fi access point settings

Updated to latest Realtek Wi-Fi driver

Increased Wi-Fi beacon rate to 6mbps, which reduces congestion when many Control Hubs are being
used in an area

Enabled 802.11w, which prevents Wi-Fi deauthentication attacks when the Control Hub is used with a
client device that also supports 802.11w

Added WifiLog.txt file for debugging and disconnection analysis

Improved reliability of FtcAccessPointService UI (accessed through an HDMI monitor)

Added 5 GHz channels to FtcAccessPointService UI

Ensured app data is not lost when installing a Robot Controller with a different signature via the Manage
webpage

Fixed issue where Wi-Fi SSID would sometimes be AndroidAP

Source Files for Control Hub OS:

Linux Kernel Source

U-Boot Source

Updating Robot Controller Application

The Robot Controller Application is periodically updated to incorporate fixes, improvements, and new
features as they are developed.

If you update your Robot Controller, then you should also update your Driver Station software to
the same version number.

There are two ways you can update the Operating System. It is recommended to use the
 as it will automatically notify the user if the Robot Controller Application is out of date, download the

latest APK, and install the APK on the device. The second way utilizes the FIRST Robot Controller
Console. For using the FIRST Robot Control Console, you will need to download the latest version of the
Robot Controller Application from the .

REV Hardware
Client

GitHub repository

The following procedure works with Control Hubs with the part number REV-31-1595. For
support using the REV-31-1152 Control Hub v0 please reach out to REV support
(support@revrobotics.com).

Using the REV Hardware Client

Steps ​

Power on the Control Hub, by plugging the 12V
Slim Battery () into the XT30
connector labeled “BATTERY” on the Control Hub.

REV-31-1302 ​ ​

The Control Hub is ready to connect with a PC
when the LED turns green.

Note: With Robot Controller Application versions
5.5 and below the light will blink blue every ~5

https://github.com/REVrobotics/kernel-controlhub-android
https://github.com/REVrobotics/uboot-controlhub-android
https://github.com/FIRST-Tech-Challenge/FtcRobotController
https://www.revrobotics.com/rev-31-1302/

seconds. In 6.0 and above the LED is solid green.

​ ​0
1

2
3

4
2

I2C

UART

RS485

BATTERY

1
0

CONTROL
HUB

Plug the Control Hub into the PC using a USB-A to
USB-C Cable ()REV-11-1232

​

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the UI
under the Hardware Tab. Select the Control Hub.

After selecting the Connected Hardware the Update tab will pop up. Under Robot Controller App select
Download.

Once the app has downloaded, select Update.

https://www.revrobotics.com/rev-11-1232/

When the Robot Controller Application update has completed a status message "Robot Controller app
update complete." The status of the Robot Controller App will also change to "Up-to-Date."

Using the Robot Controller Console

Download the Latest Robot Controller APK - FtcRobotController-release v8.0

Updating the Robot Controller App

Click on the FtcRobotController-release.apk link in the repository to access the Robot Controller file.

Click on the Download button to download the Robot Controller app as an APK file to your computer.

https://github.com/FIRST-Tech-Challenge/FtcRobotController/releases/tag/v8.0

On the Manage page, click on the Select App button to select the Robot Controller app that you would like
upload to the Control Hub.

An Update button should appear if an APK file was successfully selected.

Click on the Update button to begin the update process.

During the update process, if the Control Hub detects that the digital signature of the APK that is being
installed is different from the digital signature of the APK that is already installed, the Hub might prompt you
to ask if it is OK to uninstall the current app and replace it with the new one.

This difference in digital signatures can occur, for example, if the previous version of the app was built and
installed using Android Studio, but the newer app was downloaded from the GitHub repository.

Press OK to uninstall the old app and continue with the update process.

If the update process had to uninstall the previous version of the Robot Controller app, the network name
and password for the Control Hub will be reset back to their factory values. If this happens, then you will
need to reconnect your computer to the Control Hub using the factory default values.

When the update process is complete and you have successfully reconnected your computer to the Contro
Hub's network, you should see an "installed successfully" message on the Manage web page.

Updating the Driver Hub

The Driver Hub has two pieces of software that are field upgradable, the Driver Hub Operating System and
the Driver Station Application. Both pieces of software are updatable either through the

 or directly on the .
REV Hardware

Client Driver Hub with the Software Manager

Driver Hub Software Manager

The Driver Hub has a Software Manager Application pre-installed for updating the Driver Hub. Open the
application by pressing on the Software Manager icon. Select the Update All button to update all the
software that requires updating.

Make sure the Driver Hub is connected to a Wi-Fi network with access to the internet to download
and install the latest software.

1.0.1

1.1.0

The updates can take several minutes to complete. Make sure the Driver Hub is charged or plug
in the Driver Hub during the updating process.

REV Hardware Client

Startup the REV Hardware Client and connect the Driver Hub to the PC using the USB-A to USB-C cable.
Once the Driver Hub is connected it will show up on the front page of the UI under the Hardware Tab. Select

the Driver Hub.

After selecting the Connected Hardware the Update tab will pop up. Any software the needs updating will
have an Out-of-Date notification. Pressing the update button allows the REV Hardware Client to download
the software update and install on the Driver Hub.

Once all the Out-of-Date notifications are cleared the Driver Hub is fully up to date.

Accessing Log Files

When troubleshooting problems with the REV Control System log files provide indicators of what the status
of the Control Hub or Expansion Hub were during an event. Often the first log that is considered is the Robot
Controller log, as they are relatively easy to decipher and can be pulled from the Control Hub or Robot
Controller. While working through the looking through the XML files, Wi-Fi Log, or
Updater Logs in addition to the Robot Controller logs help to paint a full picture.

troubleshooting process

There are a few ways to access the log files depending on if you are looking to troubleshoot or downloading
the log files for REV support to help.

Log Viewer - REV Hardware Client

The REV Hardware Client has a Log Viewer that makes it easier to parse overall log files. Through a series
of filters, tags, and a search function makes it easy to see what is happening on the Control Hub or Driver
Hub during any opmode run.

To access the Log Viewer, head to the Utilities Tab.

From there you can select and open log files for connected devices or for ones downloaded onto the
computer.

For more information on the Log Viewer check out the .REV Hardware Client User's Manual

Downloading Log Files

When sending logs to REV Support use the REV Hardware Client. The Client will zip all relevant log files,
collect some additional information from a form, and then send them to REV for diagnosis. When running
through the troubleshooting process at an event, physically connecting to a Control Hub () and
using the file search of the computer allows access to the files. Alternatively connecting to the Robot
Controller Console allows downloading the logs through the manage tab.

REV-31-1595

https://docs.revrobotics.com/rev-hardware-client/
https://www.revrobotics.com/rev-31-1595/

REV Hardware Client

1. Provide 12v Power to the Control Hub.

2. Plug the USB-C Cable into the top board of the Control Hub and into a PC with the
 installed.

REV Hardware
Client

3. Select the Control Hub from the Connect Hardware.

4. Click the "Send Diagnostics to REV" Button

There is a short form to fill out with additional information to help REV Support troubleshoot the
issue.

File Search

Using a PC

Mac computers do not support MTP natively, the protocol used to browse files on Android
devices. You need to use the Android File Transfer app: https://www.android.com/filetransfer/

Windows devices will operate without the need for an additional application.

https://www.android.com/filetransfer/

1.Provide 12v Power to the Control Hub.
2.Plug the USB-C Cable into the top board of the Control Hub and into a PC
3.Navigate to This PC\Control Hub v1.0\Internal shared storage. Robot Controller, Wi-Fi, and Updater logs
can be found on this level of the file hierarchy.

The logs are all text files that can either be open via Notepad++ and looked over or sent to REV
Support via an email to be further troubleshot.

4.While in the This PC\Control Hub v1.0\Internal shared storage location navigate to a folder called "FIRST."
The folder should have XML files with a naming convention that mirrors the names of the robot configuration.

Using a Mac

1. Download the Android File Transfer App on your MAC
2. Open Android File Transfer.dmg
3. Drag Android File Transfer to Applications
4. Use the USB-C to USB-A cable that came with your Control Hub (or other relevant Android Device)
5. Double click Android File Transfer
6. Navigate to Control Hub v1.0\Internal shared storage. Robot Controller, Wi-Fi, and Updater logs can be
found on this level of the file hierarchy.

The logs are all text files that can either be open via Notepad++ and looked over or sent to REV
Support via an email to be further troubleshot.

7. While in the Control Hub v1.0\Internal shared storage location navigate to a folder called "FIRST." The
folder should have XML files with a naming convention that mirrors the names of the robot configuration.

Robot Controller Console

1.Open the
2. Select the Manage page
3. Press the Download Logs button

Robot Controller Console

Could not load image

4. Check for the robotControllerLog.txt in the Downloads Directory of the Computer
5. Open the Logs via a text editor, like Notepad++, to view the contents of the log or send the logs to REV
Support

Could not load image

Programming

Hello Robot - Introduction to Programming

Hello Robot - Choosing Your Path

In almost every programming class, the first lesson taught is some variation of the Hello World code. Hello
World, often a one to two line segment of code, displays the line Hello World when the code is built and run.
Though this code may seem like a very simple introduction to programming, it introduces several crucial
concepts in programming. Hello World is the first lesson many students get in the logic of programming, as
well as, language specific syntax. But, most importantly, the simplicity of Hello World allows it to be a
testing point for the system used to execute the code.

Though it is possible to display Hello World or Hello Robot on an Android Device in the REV Control
System, it doesn't serve quite the same purpose. In order to properly consider syntax, logic, and testing in

the REV Control System; consideration has to be paid to a multitude of system elements like actuators and
sensors. For that reason the Hello World lesson has been edited into Hello Robot.

By the end of this guide users should understand how to configure their robot and test their robot
mechanisms. The following outline walks through the flow and goals of this section. Choose the path that
best fits your needs.

If you are new to programming or the REV Control System we recommend that you follow through
the whole guide to learn how to properly utilize the system.

Section Sub Section Goals

Introduction ​ ​

​ ​Programming Tools

There are three programming
tools for the REV Control
System. Learn about the
benefits of each option and
choose the best option to fit you
needs. Section also includes
instructions on how to access
the option you choose.

​ ​Op Modes

What are Op Modes? Learn
about the different types of Op
Modes in the REV Control
System

Configuration ​ ​

​ ​Importance of Configuration
What is Configuration and why
should you configure before yo
begin to program?

​ ​Configuring Common Hardware
Learn how to configure
commonly used hardware like
motors, servos, and sensors.

​
​

Common Errors in Hardware
Mapping

Understand and solve the
common errors that occur when
configuring and mapping
hardware.

Test Bed: Introduction ​ ​

​ ​Test Bed

Why creating a test bed of
actuators and sensors can help
with programming. This test be

or something equivalent, will be
used in following sections.

​ ​Testing Basics

Learn why is one of the most
important aspects of Software
Development and how it differs
from troubleshooting.

Test Bed: Blocks ​ ​

​ ​Creating an Op Mode
Focuses on how to navigate th
Blocks interface and create an
op mode.

​ ​Programming Essentials

Breaks down the structure and
key elelments needed for an op
mode, as well as some of the
essential components of Block
and programming logic.

​ ​Programming Actuators

How to code servos and motors
This section walks through the
basic logic of coding actuators,
controlling actuators with a
gamepad, and using telemetry.

​ ​Programming Sensors

How to code a digital device.
The section focuses on the
basic logic of coding a digital
device, like a REV Touch
Sensor.

Test Bed: OnBot Java ​ ​

​ ​Creating an Op Mode
Focuses on how to navigate th
OnBot Java interface and creat
an op mode.

​ ​Programming Essentials

Breaks down the structure and
key elelments needed for an op
mode, as well as some of the
essential components of Java.

​ ​Programming Actuators

How to code servos and motors
This section walks through the
basic logic of coding actuators,
controlling actuators with a
gamepad, and using telemetry.

​ ​Programming Sensors

How to code a digital device.
The section focuses on the
basic logic of coding a digital

device, like a REV Touch
Sensor.Robot Control ​ ​

​ ​Create a Basic Robot

Introduces a potential robot to
work with as well as the
configuration file used in the
following sections.

​ ​Drivetrain Basics

Differences between differentia
and omnidirectional drivetrains
and their affect on teleoperated
control types.

Robot Navigation: Blocks ​ ​

​
​

Basics of Programming
Drivetrains

What to consider when

and how to apply this to an

.

programming drivetrain motors

arcade style teleoperated
control

​ ​Elapsed Time

Learn how to use the concept o
elapsed time to create time
controlled autonomous
programs.

​ ​Encoder Navigation
Learn how to use encoders to
create more consistent
autonomous pathing.

Robot Navigation: OnBot Java ​ ​

​
​

Basics of Programming
Drivetrains

What to consider when

and how to apply this to an

.

programming drivetrain motors

arcade style teleoperated
control

​ ​Elapsed Time

Learn how to use the concept o
elapsed time to create time
controlled autonomous
programs.

​ ​Encoder Navigation
Learn how to use encoders to
create more consistent
autonomous pathing.

Arm Control: Blocks ​ ​

​ ​Basics of Programming an Arm
Introduction to coding an arm fo
teleoperated control and
working with a limit switch

​
​

Programming an Arm to a
Position

Using motor encoders to move
an arm to a specific position,
such as from 45 degrees to 90
degrees.

​
​

Using Limits to Control Range of
Motion

Working with the basics of arm
control, motor encoder, and lim
switches to control the range of
motion for an arm.

Arm Control: OnBot Java ​ ​

​ ​Basics of Programming an Arm
Introduction to coding an arm fo
teleoperated control and
working with a limit switch

​
​

Programming an Arm to a
Position

Using motor encoders to move
an arm to a specific position,
such as from 45 degrees to 90
degrees.

​
​

Using Limits to Control Range of
Motion

Working with the basics of arm
control, motor encoder, and lim
switches to control the range of
motion for an arm.

Programming Tools

Choosing the appropriate programming tool or language is one of the most crucial decisions a user can
make. In the REV Control System there are three programming tools to choose from: Blocks, OnBot Java,
and Android Studio. Each tool comes with different benefits and difficulty levels.

Basic Intermediate Advanced

Blocks Onbot Java Android Studio

The programming tools for the Software Development Kit (SDK) were chosen as a means of giving users
the ability to choose among alternatives, but also as a means of allowing users to naturally move from basic
to advanced programming. A user can reasonably start with Blocks and build their way up to Android Studio.
In fact, this is often our suggestion to rookie users. Android Studio is a very powerful tool but, as you are
learning the basics of programming, has the potential to be a hindrance rather than a help.

Review the following sections to learn about each programming tool and the benefits that come with it. Once
you are done reviewing make an educated choice about what tool will work best for you!

Blocks

The Blocks Programming Tool is a visual, programming tool that lets programmers uses a web browser to
create, edit and save their op modes. Blocks, like other scratch based programming tools, is a collection of
preset code snippets that users can drag-and-drop into the appropriate code line.

Blocks was created to cater to users who have little to no experience programming. Unlike OnBot Java or
Android Studio, Blocks works to insulate and protect users from the complexities of the SDK. The Blocks
interface accomplishes this by hiding, or abstracting, some of the more complex overhead the system
requires, like calls to specific libraries or classes. The code snippets make those connections and
assumptions for the user.

One of the other major benefits of Blocks are the built-in features that allow users to naturally transition from
little to no programming knowledge to a basic understanding of Java. Blocks teaches users the logic of
programming, while protecting them from syntax mistakes. As users gain more confidence and ability they
can use the "Show Java" option. "Show Java" allows users to see the Java syntax that corresponds with
each Block that is added to the code.

Summarization of Benefits

Hides complexities from the user allowing them to focus on learning the logic

Has an option to Show Java which allows users to see what the corresponding syntax would be in Java

Web-based interface - accessible on most devices

Saves directly to the robot

Just as powerful as OnBot Java

Accessing Blocks

This section assumes that you have already gone through the steps of setting up your REV
Control System. For more information on how to setup your control system check out the

 guide.
Getting

Started with the Control Hub

This section also assumes that you have a JavaScript enabled web browser.

1. Go to Wi-Fi Settings, on a Windows 10 Computer, by clicking on the Wi-Fi symbol.

2. Once the list of available Wi-Fi networks in the vicinity is displayed select the network that matches the
name of your Wi-Fi access point.

3. Enter the password that you set when setting up the . Control System

4. Once connected, open a JavaScript enabled browser (FIRST recommends Google Chrome).

5. Go to IP Address http://192.168.43.1:8080

6. At the top of the Robot Controller Console Page, there should be 3 menu options: Blocks, OnBot Java,
and Manage. Choose Blocks.

Passwords are case sensitive. If you do not remember your password, use the to
check the Program and Manage section of the Robot Controller Console

Hardware Client

OnBot Java

A text-based programming tool that lets programmers use a web browser to create, edit and save their Java
op modes.

OnBot Java is great for programmers with basic to advanced Java skills who would like to write text-based
op modes. OnBot Java shares some of insulative properties of Blocks, but gives users access to the more

complicated elements of the SDK libraries.For instance, OnBot requires users to make calls to classes like
the hardwareMap, which are hidden within the Blocks code snippets.

OnBot Java shares a web-based interface with the Blocks Programming tool. The web-based model is easy
to access on most devices to make code change and reduces the need to have one set device for code
changes.

Summarization of Benefits

Access to more complicated library classes for more advance programming

Reduces coding issues by hiding complex classes from the user

Allows users to learn Java in simplified interface

Web-based interface - accessible on most devices

Saves directly to the robot

Accessing OnBot Java

This section assumes you have already gone through the steps of setting up your REV Control
System. For more information on how to setup your control system check out the Getting Started
or Managing the Control System sections of the . Control System Guide

This section also assumes that you have a JavaScript enabled web browser.

1. Go to Wi-Fi Settings, on a Windows 10 Computer, by clicking on the Wi-Fi symbol.

2. Once the list of available Wi-Fi networks in the vicinity is displayed select the network that matches the
name of your Wi-Fi access point.

3. Enter the password that you set when setting up the . Control System

4. Once connected, open a JavaScript enabled browser (FIRST recommends Google Chrome).

5. Go to IP Address http://192.168.43.1:8080

6. At the top of the Robot Controller Console Page, there should be 3 menu options: Blocks, OnBot Java,
and Manage. Choose OnBot Java

Passwords are case sensitive. If you do not remember your password, use the to
check the Program and Manage section of the Robot Controller Console

Hardware Client

Android Studio

An advanced integrated development environment for creating Android apps. This tool is the same tool that
professional Android app developers use. Android Studio is only recommended for advanced users who
have extensive Java programming experience.

Android Studio allows programmer with an advanced understanding of Java a more powerful development
environment to work in. It offers enhanced editing and debugging features not available with OnBot Java or
Blocks. It also allows programmers the ability to work with 3rd Party libraries not included within the SDK.
However, Android Studio is not a web-based software and will need a dedicated laptop to run on.

Summarization of Benefits

Access to more complicated library classes for more advance programming

Enhanced editing and debugging features

Enables access to 3rd Party Libraries

Accessing Android Studio

To learn about how to properly download and work with Android Studio please visit the FTC Wiki.

FIRST Global does not have support for Android Studio.

Op Modes

Op modes (or operational modes) are computer programs that are used to customize or specify the

https://github.com/ftctechnh/ftc_app/wiki/Android-Studio-Tutorial

behavior of a robot. The Robot Controller, either the Control Hub () or an Android device
paired with an Expansion Hub (), stores and executes op modes. The Driver Station allows
users to select from any of the op modes stored on the Robot Controller and initialize, start, or stop the op
modes.

REV-31-1595
REV-31-1153

In the SDK there are two types of op modes: autonomous and teleoperation. Both types of op modes have
initialization, start, and stop features on the Driver Station phone. Each feature corresponds with different
types of code segments that will be discussed in detail in the programming tool specific Test Bed sections of
this document.

The main difference between autonomous and teleoperation op modes is how they show up in the Driver
Station application. Autonomous op modes show up in a drop down menu on the left side of the Driver
Station application. The Driver Station assigns a 30 second timer to autonomous op modes. If the
autonomous op mode is not manually stopped prior to the end of the 30 seconds the Driver Station will
automatically stop the code. TeleOp op modes will appear in a drop down menu on the right side of the
Driver Station application. These op modes will run until they are manually stopped.

It is also worth noting that in the SDK op modes can be linear op modes or iterative op modes. This guide
focuses on Linear op modes, which execute code lines in a sequential order. In order to repeatedly call
actions within in a linear op mode, a loop function must be used. This topic will be discussed in further detail
as you follow along this guide.

Hello Robot - Configuration

Configuration is one of the most commonly misunderstood, or forgotten, steps required for programming a
robot. This section sets out to explain the importance of configuration and common misconceptions of
configuration by answering the following questions:

1. What is configuration?

2. How do you configure hardware elements?

3. What are common issues that are caused by a problem with the configuration file?

The Importance of Configuration

While every REV Control Hub is the same, the robots being controlled by the Control Hub are not. Each
Control Hub has the same number of motor ports, servo ports, digital ports, and the like, but how each user
utilizes these ports varies from system to system. For instance, a Color Sensor V3 may be plugged in to I2C
Bus 1 on one users Hub, but another user might use the same bus to host a 2m Distance Sensor.

The Control Hub knows that there is an I2C device attached to the port. But it doesn't naturally have the
information needed to translate that information to an Op Mode or tell the op mode which drivers need to be
accessed in order to use this sensor. A user needs to provide additional information, so that the internal

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

software in the Hub can take information from the Op Mode and apply it to a corresponding external
hardware port and vice versa. This process is known as hardware mapping. Hardware mapping is a two
step process that includes: the creation of a readable file known as a configuration file and calls to the
hardware map within an Op Mode

The Configuration File

The configuration file is a readable file created by the user through the Driver Station Application. When
creating a configuration file users are required to assign each device to a port, select the type of device it is
from options provided by the SDK, and give it a unique name.

In programming its important to distinguish between variables, by giving each variable a different
name.

Once a configuration file is saved or activated the robot will restart. This restart is so the SDK can read the
file, determine what devices are present, and add the devices to the hardwareMap class.

The Hardware Map

On the user-created op mode side of the fence is the hardwareMap class. This class is where the
information created in the configuration is available for use in Blocks, OnBot Java, or Android Studio code.

The level of access or interaction a user has with the hardwareMap class depends on which programming
tool they are using. Since Blocks is a collection of predetermined code snippets, it creates references to the
hardwareMap whenever a variable code snippet, corresponding to an external hardware, is first referenced.
However, with Onbot Java and Android Studio the reference to the hardwareMap requires that a variable be
created and assigned to an external hardware unit within the hardwareMap

Information on referencing the hardwareMap class in Java will be further explained in the
.

Test
Bed - OnBot Java section

Configuring Common Hardware Devices

Accessing the Configuration Utility

​

Select the menu in the stop right corner of the
Driver Station. Then select Configure Robot.

​

In the Available configurations page, select New. ​

In the USB Devices in configuration page select
the Control Hub Portal.
Note: If you have an Expansion Hub it will appear
as an Expansion Hub Portal.

​

Within the Hub Portal select the device you want to
configure. In this use case, select the Control Hub.

 Note: if you have an Expansion Hub connected to
a Control Hub, the Expansion Hub will also appear
as a configurable device in the portal.

​ ​

This will bring you to the page shown in the image.
From here you can configure motors, servos and
sensors that you are using. Follow through the rest
of the guide to figure out how to configure devices
that will be used in the Test Bed section.

Note: The way that Digital and Analog devices are
configured versus how I2C devices are configure
differ significantly. This is because each physical
I2C port is a different bus that can host multiple
different sensors. For more information on the
different types of sensors check out the
section.

sensors

​ ​

Configuring Hardware

The following section will show how to configure components that will be used in the Test Bed. The
hardware type and names have been chosen in consideration for the Hello World lesson plan. Users should
heed notes within the steps to consider when creating configuration files for other instances.

Configuring a Motor

​

Select Motors. ​

The Motor page will allow you to configure all four
motor ports on the Hub. On Port 0 open the drop

Motor

down menu and select REV Robotics Core Hex
Motor. Note: In your configuration file you should
configure the motor ports to the type of motor you
are using.

​

Name the motor test_motor. Select done.

Note: remember when naming hardware in the
configuration file that the REV Control System is
Case Sensitive.

​

Configuring a Servo

​

Select Servos. ​

Servo

The Servo page will allow you to configure all six
servo ports on the Hub. On Port 0 open the drop
down menu and select Servo.

Note: REV Servos can be configured as a Servo
or a Continuous Rotation Servo. The type of
device a servo is configured as should correspond
with the mode the sensor is in. For more
information on Sensor modes visit the

.
Sensor

section

​

Name the servo test_servo. Select done.

Note: remember when naming hardware in the
configuration file that the REV Control System is
Case Sensitive.

​

Configuring a Digital Device

​

Select Digital Devices.

Digital Device

https://docs.revrobotics.com/15mm/actuators/servos

​

The Digital Devices page will allow you to
configure all eight digital ports on the Hub. On Port
1 open the drop down menu and select Digital
Device .

Note: Touch Sensors must always be configured
on odd number ports. Check out the

 for more information.
Digital Sensor

section

Note: Touch Sensors can be configured as a REV
Touch Sensor or a Digital Device. In the FTC SDK
the type of device it is configured as changes the
classes and methods that can be used.

​

Name the motor test_touch. Select done.

Note: remember when naming hardware in the
configuration file that the REV Control System is
Case Sensitive.

​

Configuring an I2C Device

​

I2C Device

Select I2C Bus 0.

​

Select Add.

Note: Each I2C Bus can host more than one I2C
sensor as long as the I2C addresses do not conflict.
Bus 0 will always host the internal IMU. For more
information on I2C sensors visit the . I2C section

​

On Port 1, which was created in the previous step,
open the drop down menu and select REV Color
Sensor V3.

Note: If you are using Color Sensors V1 or V2
select REV Color/Range Sensor. For more
information on configuring with the REV Color
Sensors visit the . Color Sensor Datasheets

​

Name the motor test_color. Select done.

Note: remember when naming hardware in the
configuration file, that the REV Control System is
Case Sensitive.

https://docs.revrobotics.com/color-sensor/

Saving the Configuration File

​

Hit Done twice until you reach the USB Devices in
configuration page. On the USB Devices in
configuration page hit Save.

​

Name the configuration helloRobotTest and then
select Ok.

Note: The FTC SDK does not force you to abide by
a naming convention for but it is common to name
configurations in lowerCamelCase.

​

Press back to activate the saved configuration.
Your Robot Controller will restart once you activate
a new configuration.

​

Common Errors in Hardware Mapping

Within the programming and software world errors come in many different forms and types. When hardware
mapping there are two major errors that you may run into. Both errors fall into common categories of
software errors:

- are errors between how an interface should work and how it actually behavesInterface Errors

 - are errors that occur when a program is being executed Runtime Errors

Interface Errors

Interface errors occur in the SDK when the parameters of the SDK interface are not met. In the hardware
mapping process the most common interface error occurs with the Blocks Programming Tool. As mentioned
in the section, Blocks hides complexities of the SDK library from the users. One
way it does this is by automatically creating references to the hardwareMap when code snippets for an
external hardware unit are used.

 Introduction to Programming

In order to automate the hardwareMap calls the Blocks interface reads the configuration file and creates
hardware variables based off of the information it finds. For this reason it is important to create a
configuration file before trying to code.

The image below shows two different interface versions of Blocks. In the version with no configuration file
there are no drop down menus to access code snippets specific to actuators or sensors. In the version of the

https://textexpander.com/blog/the-7-most-common-types-of-errors-in-programming-and-how-to-avoid-them/
https://textexpander.com/blog/the-7-most-common-types-of-errors-in-programming-and-how-to-avoid-them/

interface with a configuration file the drop down menus are present and the motor-specific code snippets are

No Configuration File With Configuration File

Runtime Errors

Within the SDK runtime errors occur during initialization or run. One of the most common runtime errors
within the REV Control System is exhibited in the image below.

This error is indicative of an inconsistency between how a hardware device is called within the code and
how that compares against the name used in the configuration file. There are two different ways this error
can occur.

The first occurrence of this error is when there is no configuration file found. This can mean that a
configuration file has not been created, a file has been created but is not active, or the wrong file is being
used. When any of these instances happen, the code is requesting a device name and type that the
hardware map is unable to locate in the configuration file. The program stops on the first such device name
it's unable to locate.

An incorrect reference to the hardwareMap can also cause this error to occur. Unlike Blocks, OnBot Java
and Android Studio require that a programmer hard code the hardwareMap call. If the reference name in the
call does not correspond with the name of the device in the configuration file (it is case sensitive) the code
will build without failure but the runtime error will occur. Lets use the configuration file from the previous

section as an example; where there is a touch sensor named "test_touch" and a motor name

"test_motor" .

The quotations marks indicate that "test_touch" and "test_motor" represent a string

variable that corresponds with the names of the devices in the configuration.

public class HR_test extends LinearOpMode{
 private DigitalChannel test_touch;
 private DcMotor test_motor;

 @Override
 public void runOpMode(){
 //get the touch sensor and motor from hardwareMap
 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");
 test_motor = hardwareMap.get(DcMotor.class, "test_moto");

 }
}

Notice in the example lines of code that the hardwareMap.get() for test_motor is written as "test_moto"
rather than "test_motor." When the code is building, there is no immediate check that the name requested is
in the hardwareMap. This check is done when code is run on the robot. When the communication to the
hardwareMap is initiated it looks for "test_moto" and when it can not find it, it creates the runtime error
referenced above.

Hello Robot - Test Bed

One of the most important steps in the engineering design process and the software development lifecycle is
testing. When working with code, ensuring that it works without errors and works to the standard decided
upon in the planning stage of the process is crucial. In order to ensure that the code is working as intended
testing needs to be performed.

Before delving into the introduction to programming sections, or ; its
important to understand testing, the benefits of creating a test bed, the components needed for the next
sections, and how to use gamepads. Follow through the rest of this section to learn more about testing!

Test Bed - Blocks Test Bed - OnBot Java

Section Goals of Section

Testing Basics
Learn why is one of the most important aspects of
Software Development and how it differs from
troubleshooting.

Test Bed

Why creating a test bed of actuators and sensors
can help with programming. This test bed, or
something equivalent, will be used in following
sections.

Using Gamepads
Understanding the naming conventions for
programming a gamepad.

Keep in mind that this is the introduction to the basic programming guide. and
 will walk you through the basics of programming with the REV Control

System.

Test Best - Blocks
Test Bed - OnBot Java

Testing Basics

The purpose of testing is to identify, isolate, and correct potential issues in a design before the design is put
into use. Testing takes on different forms or provides different metrics for various intents in design. A
mechanism, like a shooter for instance, might be tested to confirm that it is running reliably. During the
planning phase of the design process you should create various performance, quality, and reliability metrics.
When the design is built, or the program is written, these metrics will help you identify whether the
mechanism meets the standards you expect it to. If the standards of operation are not met then the problem
needs to be isolated.

In order to fix a problem in the design process, you must isolate the source of the issue. To understand how
this works consider the following example:

A team has recently purchased a Control Hub and a Core Hex Motor. They plug the Core Hex
Motor into the Control Hub using the correct wiring, but when they go to run their code the motor
doesn't move. What is the most likely reason for this failure:

1. The program is the issue

2. The motor is the issue

3. The wire connecting the motor to the Hub is the issue

4. The Hub is the issue.

Without more information there is not a good way to discover why the motor is not running. In order to narrow
things down the different components have to be tested until the root of the issue is found. Common practice
is to start with a code that is known to work, such as one of the sample codes in the SDK. If the motor still
doesn't run the next thing the team should check is whether or not the wires are working as intended. One by
one the team should go through and test, or troubleshoot, the different potential origins of the problem to see
what is working and what isn't.

Once the source of an issue has been isolated, the issue needs to be corrected. The duration of the fix
depends on the sources of the problem and how deep it runs. For instance, if an op mode doesn't work as
intended the fix may be a simple change, like to the configuration file or the hardwareMap. A larger issue
that requires a redesign, like a mechanism not meeting performance metrics, triggers a restart of the
engineering design process.

Testing vs. Troubleshooting

Previously, testing was defined as the process of identifying, isolating, and correcting potential issues during

the design process. This differs from troubleshooting which is the process of identifying, isolating, and
correcting issues of a mechanism that went through the testing process and worked as intended
In the the examples of a cars check engine light was used. In this example, the
known indicator of a failure was the cars engine light. The check engine light informs the driver that
something is wrong with the car but in order to find the cause of the issue troubleshooting and diagnostic
steps must be performed. To maintain that comparison, testing is what the engineers of the car use to
establish the metrics of expected engine performance. If those standards are not met then the check engine
light turns on to warn the driver of the issue.

troubleshooting section

Test Bed

One of the fallbacks to testing code in a system of components, like the REV Control System, is that there is
not a guarantee that all components are functioning as they should be. For instance, if a motor on the robot
isn't working there are several potentials reasons for the failure. The motor, the motor port on the Control
Hub, the wire connecting the motor to the port, and the code are all potential causes of motor failure.

If a failure occurs after the Robot is assembled it can be hard to go back and make changes, or
troubleshoot without having to disassemble the robot. One of the ways to plan ahead for this circumstance
is to create a test bed prior to creating a robot.

When testing code do not assume that a failure is due to the mechanism rather than the code.
, while being similar concepts, are fundamentally different. Checking

the code or using a known code that works should always occur before troubleshooting
components like actuators and sensors.

Testing and troubleshooting

A test bed is a testing environment for hardware and software components, commonly used in the
engineering world. Test bed applications includes a broad range of different equipment and measurement
testing. In some cases a test bed is a piece of equipment for testing a specific product, in other cases it is a
system of components that create a testing environment. Regardless, the end goal of a test bed is to ensure
a component is working before it is used for its intended purpose.

Creating a test bed eases the process of troubleshooting if there is a failure during code testing. The
purpose of this section is to create a test bed to test basic code in the Test Bed - Blocks and Test Bed -
OnBot Java sections.

Creating a Test Bed

The design of a test bed depends on the use case and available resources. For instance, one of the design
requirements for the test bed featured below was accessibility. Notice that the placement of the hardware
components on the Extrusion allows for the actuators, sensors, and Control Hub to be removed or swapped
out with ease.

1 6
2

5 4

3

Another major design consideration for this test bed was that it include the common components necessary
to teach users the basics of programming with the REV Control System. In this case components were
chosen from the REV FTC Starter Kit.

1. Control Hub

2. REV Core Hex Motor

3. Smart Robot Servo

4. Touch Sensor

5. Color Sensor V3

6. Battery

Any one of these test beds components can be swapped out for an equivalent component. For
instance, if you have an Expansion Hub rather than a Control Hub. However, with an Expansion
Hub you may need to consider placement for the Robot Controller Phone.

There are other minor, but important, design considerations to make for a test bed. For example, when
adding an actuator to a test bed consider the following questions:

What level of constraint does the actuator need? One of the benefits of creating a test bed for motors,
or other actuators, is that the motors can be properly constrained during the testing process. In this case
providing basic motion support and constraint is valuable.

How will you be able to tell the behavior of the actuator? The example test bed uses a wheel with a
zip tie to help users visualize the behavior of the motor. Tape or other markers can be used, as well.

For the purpose of this guide a test bed similar to the example one can be built.

Using Gamepads

The Test Bed sections highlights the necessary robot components needed to learn the basic programming
concepts used in the Test Bed - Blocks and Test Bed - OnBot Java sections. However, there are two more
components needed to succeed in testing your code: A Driver Hub (or equivalent Driver Station Android
Device) and a gamepad.

For information on setting up a Driver Hub and gamepad please visits the
 guide.

Getting Start with
Driver Hub

All buttons on a gamepad can be programmed to a specific task or behavior. Throughout the Hello Robot
Guide you will encounter several different places where the gamepad is utilized. Knowing the general
naming convention for the gamepads will help you program them correctly. The guide assumes you are
using either a Logitech gamepad or a PS4 gamepad, like Etpark Wired Controller for PS4 ().
To understand how to program a gamepad, especially with difference in the way certain buttons are named,
please see the following graphic and table, showcasing what the code lines correspond with which button.

REV-39-1865

Square
Triangle

Circle

C

Dpad

Left Bumper Right Bumper
Share Options

https://www.revrobotics.com/rev-39-1865/

Cross

Left Stick Right Stick

PS

PS4 Controllers
Default (Logitech

Gamepad)
Blocks Java Data Type

Cross a

​

gamepad1.a Boolean

Circle b

​

gamepad1.b Boolean

Triangle y

​

gamepad1.y Boolean

Square x

​

gamepad1.x Boolean

Dpad Up Dpad Up

​

gamepad1.dpa
d_up

Boolean

Dpad Down Dpad Down

​

gamepad1.dpa
d_down

Boolean

Dpad Left Dpad Left

​

gamepad1.dpa
d_left

Boolean

Dpad Right Dpad Right

​

gamepad1.dpa
d_right

Boolean

Left Bumper Left Bumper

​

gamepad1.lef
t_bumper

Boolean

Right Bumper Right Bumper

​
gamepad1.rig

Boolean

 ht_bumper

Left Trigger Left Trigger

​

gamepad1.lef
t_trigger

Float

Right Trigger Right Trigger

​

gamepad1.rig
ht_trigger

Float

PS n/a

​

gamepad.ps Boolean

Options Start

​

gamepad1.st
art

Boolean

Share Back

​

gamepad1.ba
ck

Boolean

Left Stick Button Left Stick Button

​

​

gamepad1.lef
t_stick_butt

on
Boolean

Left Stick X Axis Left Stick X Axis

​

gamepad1.lef
t_stick_x

Float

Left Stick Y Axis Left Stick Y Axis

​

gamepad1.lef
t_stick_y

Float

Right Stick
Button

Right Stick
Button

gamepad1.rig
ht_stick_but

ton
Boolean

Right Stick X
Axis

Right Stick X
Axis

​

gamepad1.rig
ht_stick_x

Float

Right Stick Y
Axis

Right Stick Y
Axis

​

gamepad1.rig
ht_stick_y

Float

Data Types

Boolean

Boolean

Boolean data has two possible values: True and False. These two values can also be represented by On
and Off or 1 and 0. Buttons, bumpers, and triggers on the gamepad provide boolean data to your robot. For
example, a button that is not pressed will return a value of False and a button that is pressed will return the
value True.

Float

Float data is a number that can include decimal places and positive or negative values. On the gamepad,
the float data returned will be between 1 and -1 for the joystick's position on each axis. Some examples of
possible values are 0.44, 0, -0.29, or -1.

Test Bed - Blocks

The Blocks Programming Tool is a visual, programming tool that lets programmers use a web browser to
create, edit and save their op modes. Blocks, like other scratch based programming tools, is a collection of
preset code snippets that users can drag-and-drop into the appropriate code line. In this section users can
learn how to create an op mode, as wells as the basics of programming the actuators and sensors featured
on the test bed.

Follow the guide in order to get an in depth understanding of working with Blocks or navigate to the section
that fits your needs:

Section Goals of Section

Creating an Op Mode
Focuses on how to navigate the Blocks interface
and create an op mode.

Programming Essentials

Breaks down the structure and key elelments
needed for an op mode, as well as some of the
essential components of Blocks and programming
logic.

Programming Actuators

How to code servos and motors. This section walk
through the basic logic of coding actuators,
controlling actuators with a gamepad, and using
telemetry.

Programming Sensors
How to code a digital device. The section focuses
on the basic logic of coding a digital device, like a
REV Touch Sensor.

Creating an Op Mode

Before diving in and creating your first op mode, you should consider the concept of . naming conventions

https://en.wikipedia.org/wiki/Naming_convention_(programming)

When writing code the goal is to be as clear as possible about what is happening within the code. This is
where the concept of naming conventions comes into play. Common naming conventions have been
established by the programming world to denote variables, classes, functions, etc. Op modes share some
similarities to . Thus the naming convention for op modes tends to follow the naming convention for
classes; where the first letter of every word is capitalized.

classes

This section assumes that you have already accessed the Blocks platform during the
. If you are unsure how to access blocks please revisit this section

before proceeding.

Hello Robot
- Introduction to Programming

To start, access the Robot Controller Console and go to the Blocks page. In the upper right-hand corner of
there is a Create New Op Mode button, click it.

Clicking the Create New Op Mode button will open up the Create New Op Mode window. This window
allows users to name their op modes and select a sample code to build off of. For this guide use the default
BasicOpMode sample and name the op mod HelloRobot_TeleOp as shown in the image below.

Create New Op Mode

Op Mode Name: HelloRobot

Sample: BasicOpMode

Cancel OK

TeleOp

Once the op mode has been named click 'OK' to proceed forward. Creating an op mode will open up the
main Blocks programming page. Before moving on to programming, take some time to learn and understand
the following key components of Blocks featured in the image below.

1

https://en.wikipedia.org/wiki/Class_(computer_programming)

2

3

4

1

1. Save Op Mode - Click this button to save an op mode to the robot. It is important to save the op mode
any time you stop working on a code, so that progress is not lost.

2. TeleOp/Autonomous - This section of blocks allows users to change between the two types of op
modes: teleop and autonomous.

3. Categorized Blocks - This section of the screen is where the programming blocks are categorized and
accessible. For instance, clicking Logic will open access to programming blocks like if/else statements.

4. Programming Space - This space is where blocks are added to build programs.

If a configuration has been made then the Actuators, Sensors, and Other Devices in the
Categorized Blocks section should appear as drop down menus, where blocks that are unique to
specific hardware can be accessed. If this is not the case a configuration file has not been made.
For more information visit the page, before moving forward with programming. Configuration

Programming Essentials

During the process of creating an op mode the Blocks tool prompted the selection of a sample code. In
Blocks these samples act as templates; providing the blocks and logical structure for different robotics use
cases. In the previous section the sample code BasicOpMode was selected. This sample code, seen in the
image below, is the structural shell needed in order to have a working op mode.

An op mode can often be considered a set of instructions for a robot to follow in order to understand the
world around it. The BasicOpMode provides the initial set of instructions that are needed in order for an op
mode to properly function.

Though this sample is given to users to reduce some of complexities of programming as they learn; it
introduces some of the most important code blocks. It is also important to understand what is happening in
the structure of the BasicOpMode, so that code blocks are put in the correct area.

Key Op Mode Blocks

Enter your comment here!

Comments are blocks of code that benefit the human user. They are used by programmers to explain the
function of a section of code. This is especially helpful in collaborative programming environments. If code is
handed from one programmer to another, comments communicate the intent of the code to the other

programmer. Blocks like are comments written by the FIRST Tech Team to inform

the user what will happen when blocks are added directly beneath the comment.

For instance, any programming blocks that are placed after the comment (and

before the block) will be executed when the op mode is first selected

by a user at the Driver Station. Typically, blocks put in this section are meant to create and define variables
between the initialization and start phases of the op mode.

A is a storage location with an associated symbolic name, which contains some known
or unknown quantity of information referred to as a value. Variables can be numbers, characters,
or even motors and servos.

variable

When the Robot Controller reaches the block it will stop and wait

until it receives a Start command from the Driver Station. A Start command will not be sent until the user

pushes the Start button on the Driver Station. Any code after the

block will get executed after the Start button has been pressed.

After the , there is a conditional if block

 that only gets executed if the op mode is still active (i.e., a stop

command hasn't been received).

If-then (if-else) statements are similar to the concept of cause and effect. If cause (or condition)
happens, then perform effect.

Any blocks that are placed after the comment and before the

 will be executed sequentially by the Robot Controller after the

Start button has been pressed.

The is an iterative or looping control structure.

https://en.wikipedia.org/wiki/Variable_(computer_science)

This control will perform the steps listed under the “do” portion of the block as long as the condition
 is true. What this means is that the statements included in the

“do” portion of the block will repeatedly be executed as long as the op mode HelloRobot_TeleOp is running.

Once the user presses the Stop button, the clause is no longer

true and the loop will stop repeating itself.

Functions and Methods

The previous section did not go into a detailed discussion of the purple (or) blocks.
Functions and methods are similar procedures in programming that are more advance than what will be
covered in this guide.

function method

For now the most important thing to know is that occasionally methods within the SDK libraries will need to
be called in order to perform a certain task. For instance, the line

calls the method opModeIsActive, which is the procedure in the SDK that is able to tell when the robot was
been started or stopped.

When your programming skills have advanced take sometime to visit the concepts of functions and methods
and explore how they can help you enhance your code.

Programming Actuators

Servo Basics

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Method_(computer_programming)

The goal of this section is to cover some of the basics of programming a servo within Blocks. By the end of
this section users should be able to control a servo with a gamepad, as well as understand some of the key
programming needs of the servo.

This section is considering the Smart Robot Servo in its default mode. If your servo has been
changed to function in continuous mode or with angular limits it will not behave the same using
the code examples below. You can learn more about the or changing the
Servo's mode via the by clicking the hyperlinks.

 Smart Robot Servo
SRS Programmer

With a typical servo, you can specify a target position for the servo. The servo will turn its motor shaft to
move to the target position, and then maintain that position, even if moderate forces are applied to try and
disturb its position.

For both Blocks and OnBot Java, you can specify a target position that ranges from 0 to 1 for a servo. For a
servo with a 270° range, if the input range was from 0 to 1 then a signal input of 0 would cause the servo to
turn to point -135°. For a signal input of 1, the servo would turn to +135°. Inputs between the minimum and
maximum have corresponding angles evenly distributed between the minimum and maximum servo angle.
This is important to keep in mind as you learn how to code servos.

Since this section will focus on servos it is important to understand how to access servos within Blocks. At
the top of the Categorize Blocks section there is a drop down menu for Actuators. When the menu is
selected it will drop down two choices: DcMotor or Servo. Selecting Servo will open a side window filled
with various servo related blocks.

https://docs.revrobotics.com/duo-build/actuators/servos/smart-robot-servo
https://docs.revrobotics.com/duo-build/actuators/servos/srs-programmer

Programming a Servo

From the Servo menu select the block

The block above will change names depending on the name of the servo in a configuration file. If
there are multiple motors in a configuration file the arrow next to test_servo will drop down a
menu of all the servos in a configuration.

Add this block to the op mode code within the . Click on the

number block to change from to .

Select Save Op Mode in the upper right corner in the Robot Controller Console.

Try running this op mode on the test bed two times and consider the following questions:

Did the servo move during the first run?

Did the servo move during the second run?

If the servo did not move switch from back to

 and try again.

The intent of the is to set the position of the servo. If the servo is already

in the set position when a code is run, it will not change positions. Lets try adding another

 block and see what changes.

Drag an additional block into the op mode code under the

 comment.

Try running this op mode on the test bed and consider the following question:

What is different from the previous run?

The that was added in the step above changes the servo position to 0

during the initialization phase, so when the op mode is run the servo will always move to position 1. For
some applications starting the servo in a known state, like at position zero, is beneficial to the operation of a
mechanism. Setting the servo to the known state in the initialization ensures it is in the correct position when
the op mode runs.

Programming a Servo with a Gamepad

The focus of this example is to assign certain servo positions to buttons on the gamepad. For this example
the known state will stay at position 0, so that after initialization the servo will be a the -135 degree position
of the servo range. The following list shows what buttons correspond with which servo position.

If you are using a PS4 Controller, like the Etpark Wired Controller for PS4 (), see the
 section to determine how the gamepad code used in this section translates to

the PS4 Gamepad.

REV-39-1865
Using Gamepads

Button Degree Position Code Position

Y -135 0

https://www.revrobotics.com/rev-39-1865/

X 0 0.5

B 0 0.5

A 135 1

The best way to switch the servo position will be to use a conditional if/ else if statement. An if
statement considers whether a conditional statement is true or false. If the conditional statement is true a
defined action (like the servo moving) is performed. If the conditional statement is false the action is not
performed.

An if/ else if statement takes in multiple different conditional statements. If the first conditional

statement is found to be false then the second conditional state is analyzed. Each statement in the if/
else if will be analyzed one by one until a statement is found true or all statements are found false. For
this example, there will be three conditions that will need to be checked.

From the Logic Menu in Blocks select the block and drag in into the op mode's while loop.

Click on the blue and white Settings icon for the block. This will display a pop-up menu that lets you

modify the block.

Drag an block from the left side of the pop-up menu and snap it into place under the block.

Drag a second block from the left side and snap it into place on the right side under the first

block.

There are three different paths in this if/else if block. Each one corresponds with one of the three
chosen servo positions 0, 0.5, and 1. However, there are four different buttons that will be used for this
example. Both button B and button X should be able to move the servo to position 0.5. In order to do this the
logical operator or needs to be used.

The logical operator or considers two operands if either (or both) are true the or statement is true.
If both operands are false the or statement is false.

From the Logic Menu in Blocks select the block.

Add this block to the If/else if block, as shown in the image below. Use the drop down menu on the

block to change it from an block to an block.

All gamepad related blocks are in the Gamepad Menu.

Add each button to the if/else if block as seen in the image below.

Add blocks to each section of the If/else if block. Set the servo position to

correspond with the assigned gamepad button.

There are three different paths in this if/else if statement. If the first conditional statement is true (the
Y button is pressed) the servo moves to code position 0 and the other conditional statements are ignored. If
the first condition is false (the Y button is not pressed) the second condition is analyzed. Recall that this
behavior repeats until a condition is met or all conditions have been tested and found false.

Servos and Telemetry

Telemetry is the process of collecting and transmitting data. In Robotics telemetry is used to output internal

data from actuators and sensors to the Driver Station. This data can then be analyzed by users to make
decisions that can improve code
The most useful telemetry from the servo is the the position of the servo along its 270 degree range. In order
to get that information the following line needs to be used.

In order to access the telemetry blocks select the Utilities drop down. The utilities drop down is in
alphabetical order, so telemetry is towards the bottom of the drop down options. Select the

 block from the telemetry menu.

Drag the block and place it beneath the if/else if block set.

From the Servo menu pullout the block Drag the Block and attach it to the

number parameter on the telemetry blocks.

Change the key parameter to "Servo Position"

When the op mode is run the telemetry block will display the current position information will be displayed
with the Servo Position Key. The number that corresponds with the current position will change as the servo
shaft position changes.

Motor Basics

Modify your op mode to add the motor related code. This can be done by clearing out your current
code modifications or adding the motor related code to your current op mode.

The goal of this section is to cover some of the basics of programming a motor within Blocks. By the end of
this section users should be able to control a motor using a gamepad, as well as understand some of the
basics of working with motor encoders.

Since this section will focus on motors it is important to understand how to access motors within Blocks. At
the top of the Categorize Blocks section there is a drop down menu for Actuators. When the menu is
selected it will drop down two choices: DcMotor or Servo. Selecting DC Motor will open a side window
filled with various motor related blocks.

Driving Motors

From the Dc Motor menu in Blocks select the block .

The block above will change names depending on the name of the motor in a configuration file. If
there are multiple motors in a configuration file the arrow next to test_motor will drop down a
menu of all the motors in a configuration.

Add this block to the op mode code within the while loop.

Select Save Op Mode in the upper right corner in the Robot Controller Console.

Try running this op mode on the test bed and consider the following questions:

How fast is the motor running?

What happens if you change the power from 1 to 0.3?

What happens if you change the power to -1?

The level of power sent to the motor is dependent on the numerical number assigned to the motor. The
change from 1 to 0.3 decreased the motors speed from 100% of duty cycle to 30% of duty cycle. Meanwhile,
the change to -1 allowed the motor to rotate at 100% duty cycle in the opposite direction. So, power can be
fluctuated to drive a motor forward or backwards.

However, the block will run the motor in the assigned direction until

something in the code stops the motor or causes a change in direction.

To better understand motors and the concept of duty cycle check out the our and
 documentation.

Motors
Choosing an Actuator

https://docs.revrobotics.com/15mm/actuators/motors
https://docs.revrobotics.com/15mm/actuators/choosing-an-actuator

Driving Motors with the Gamepad

In the previous section you learned how to set the motor to run at a specific power level in a specific
direction. However, in some applications, it may be necessary to control the motor with a gamepad, to easily
change the direction or power level of a mechanism.

From the Gamepad Menu in Blocks select the Block.

Drag the block so it snaps in place onto the right side of the

 block. This set of blocks will continually loop and read the value of

gamepad #1’s left joystick (the y position) and set the motor power to the Y value of the left joystick.

Note that for the Logitech F310 gamepads, the Y value of a joystick ranges from -1, when a joystick is in its
topmost position, to +1, when a joystick is in its bottommost position. If the motor is not running in the
intended direction adding a negative symbol, or negation operator, to the line of code will change the
direction of the motor in relation to the gamepad.

From the Math Menu in Blocks select the block in the image below.

Drag the negative symbol block so it snaps in place between the and

 blocks.

Motors and Telemetry

Recall that telemetry is the process of collecting and transmitting data. In Robotics telemetry is used to
output internal data from actuators and sensors to the Driver Station. This data can then be analyzed by
users to make decisions that can improve code.

In order to gain telemetry data from the motor, motor encoders need to be used. REV DC Motors, like the
Core Hex Motor, are equipped with internal encoders that relay information in the form of counts.

In order to access the telemetry blocks select the Utilities drop down. The utilities drop down is in
alphabetical order, so telemetry is towards the bottom of the drop down options. Select the

 block from the telemetry menu.

Drag the block and place it beneath the

 block set.

From the DC Motor menu pullout the block . Drag the Block and attach it

to the number parameter on the telemetry blocks.

Change the key parameter to "Counts Per Revolution: "

When the op mode is run the telemetry block will display the current position information will be displayed
with the Counts Per Revolution Key. The number that corresponds with the current position will change as
the motor shaft position is changed.

For more information on programming encoders check out the page. For more
information the counts per revolution metric and how to use it check out the page.

Using Encoders
 Encoders

Programming Sensors

Touch Sensor Basics

Modify your op mode to add the digital device related code. This can be done by clearing out your
current code modifications or adding the digital device code to your op mode.

The goal of this section is to cover some of the basics of programming a digital device, or Touch Sensor,
within Blocks.

Since this section will focus on digital devices it is important to understand how to access digital device
specific blocks. At the top of the Categorize Blocks section there is a drop down menu for Other Devices.
When the menu is selected it will drop down an option for Digital Devices. Selecting Digital Devices will
open a side window filled with various digital device related blocks. The one that will most commonly be

used is .

Before programming with a Touch Sensor or other digital device it is important to understand what
a digital device is and what the common applications for digital devices are. Visit the

page for more info.
Digital

Sensors

Programming a Digital Device

The information from digital devices comes in two states, also known as binary states. The most common

way to utilize this information is to use a conditional statement like an if/else statement.

From the Logic Menu in Blocks select the block.

Drag the block and place it beneath the comment.

Select a block from the Digital Devices menu and add it to the if/do/else block as

shown in the image below.

The block stores the binary FALSE/TRUE information from the touch sensor and

acts as the condition for the statement. If is true, any code placed in the do

portion of the block will be activated. If is false anything placed in the else portion

of the clock will be activated

The FALSE/TRUE state of a REV Touch Sensor corresponds with whether or not the button on the Touch
Sensor is pressed. When the button is not pressed the state of the Touch Sensor is True. When the button is
pressed the state of the Touch Sensor is False,

To help remember how the physical and digital states of the sensor correspond in the next few sections lets
use some comments.

Comment blocks can be found in the Miscellaneous menu.

Place one comment block in the do portion of the block and change the comment to say

 Add another comment to the else portion of the block and change that comment to say

 , as shown in the image below.

The next step in the process is to use telemetry to display the status of the Touch Sensor on the Driver

Station phone. To do this, lets create a string variable called touchStatus .

 refers to data that consists of a sequence of characters.String

1

https://en.wikipedia.org/wiki/String_(computer_science)#String_datatypes

1

2

3

1. Click on the Variables menu. This will open a side window

2. Select the Create variable... block

3. A prompt from the FIRST Robot Controller will appear asking for a name for the variable. Name the

variable touchStatus . Click okay

This process created a variable named touchStatus . Currently touchStatus is undefined, in order to

define it the block needs to be used. This block can be found in the Variables menu

now that the variable has been created.

Drag a block and place it beneath the comment block. Add

another block to the block set under the comment.

The block allows you to define the touchStatus variable. Depending on what the

status is of the touch sensor is, touchStatus will be set to a different string. For this select the string

 block from the Text menu, as seen in the image below.

Attach a string block to both blocks. Fill the blocks with a status message

that relates to the state of the Touch Sensor. For instance, and .

To display this information on the Driver Station phone must be used. In order to access the
telemetry blocks select the Utilities drop down. The utilities drop down is in alphabetical order, so telemetry

is towards the bottom of the drop down options. Select the block from the

telemetry menu.

 telemetry

Drag the block and place it beneath the block set.

From the Variables menu select the block. Drag the Block and attach it to the text

parameter on the telemetry block.

Change the key parameter to "Button Status: "

When this program is run the touchStatus telemetry will appear on the Driver Station phone. The

touchStatus information will change based on the state of the Touch Sensor button.

Digital Devices as Limit Switches

One of the most common uses for a digital device like a touch sensor is to use it as a . The intent
of a limit switch is to stop a mechanism, like an arm or lift, before it exceeds its physical limitations. In this
application power needs to be cut from the motor when the limit is met.

limit switch

The concept of a limit switch involves many of the same steps from the previous section on programming a
digital device. For that reason lets pick up from the following block set:

The block establishes a conditional environment for the limit switch. If the touch sensor is not

pressed the motor can run, however, if it is pressed the motor can not run. To add this to the code the

 block needs to be used.

For information on where to find motor specific blocks please revisit the section. motor

Add a block under the comment. Change the power to

0.3. Add another block under the comment. Change the

power to 0.

This block introduces the basics of a limit switch. Like with most sensors, its good to have telemetry

that updates the Driver Station on the status of the sensor. Consider the code from the previous section, or
the following code as potential ideas for telemetry.

Test Bed - OnBot Java

OnBot Java is a text-based programming tool that lets programmers use a web browser to create, edit and
save their Java op modes. In this section users can learn how to create an op mode, as wells as the basics
of programming the actuators and sensors featured on the test bed.

Follow the guide in order to get an in depth understanding of working with OnBot Java or navigate to the
section that fits your needs:

Section Goals of Section

Creating an Op Mode
Focuses on how to navigate the OnBot Java
interface and create an op mode.

Programming Essentials
Breaks down the structure and key elelments
needed for an op mode, as well as some of the
essential components of Java.

Programming Actuators

How to code servos and motors. This section walk
through the basic logic of coding actuators,
controlling actuators with a gamepad, and using
telemetry.

Programming Sensors
How to code a digital device. The section focuses
on the basic logic of coding a digital device, like a
REV Touch Sensor.

Creating an Op Mode

Before diving in and creating your first op mode, you should consider the concept of .
When writing code the goal is to be as clear as possible about what is happening within the code. This is
where the concept of naming conventions comes into play. Common naming conventions have been
established by the programming world to denote variables, classes, functions, etc. Op modes share some
similarities to . Thus the naming convention for op modes tends to follow that naming convention for
classes; where the first letter of every word is capitalized.

naming conventions

classes

This section assumes that you have already accessed the OnBot Java platform during the
. If you are unsure how to access OnBot Java please revisit

this section before proceeding.

Hello
Robot - Introduction to Programming

To start, access the Robot Controller Console and go to the OnBot Java page. There are a few key things to
take note of on the main Onbot Java page.

https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://en.wikipedia.org/wiki/Class_(computer_programming)

1 2 3 4 5
1. Create New Op Mode - The plus sign button opens up a window to create a new op more.

2. Project Browser Pane - This pane shows all the java project files on the Robot Controller.

3. Source Code Editing Pane - This pane is the main code editing area.

4. Message Pane - This pane provides messages on the success or failure of code builds.

5. Build Everything - Builds all of the .java files on a Robot Controller.

When an op mode is created or edited the OnBot Java editor will auto-save the .java file to the file
of system of the Robot Controller. However, in order to execute the code on the Robot Controller
the .java text file needs to be converted to a binary that can be loaded dynamically onto the FTC
Robot Controller app. This conversion is done by building the op modes.

Select the Create New Op Mode button. This will open the New File window. This window allows users to
choose settings like: naming their op modes, selecting a sample code to build off of, or choosing op mode
type.

For this guide select the following sections:

File Name: HelloRobot_TeleOp

Sample: BlankLinearOpMode

Op Mode Type: TeleOp

Setup for Configured Hardware: on

Once the proper settings have been choose, select "OK" to create the op mode. The new file will populate
the Project Browser Pane.

Programming Essentials

During the process of creating an op mode the Onbot Java tool had several options to choose from. Those
options define what information is already included in the op mode, which can simplify what a programmer
has to do on their end. For instance, an option was given to select a sample. In OnBot Java these samples
act as templates; providing statements, logical structure, and syntax for different robotics use cases.

In the previous section the following settings were selected: the Setup Code for Configured Hardware
option, the TeleOp option, and a sample code called BlankLinearOpMode. These options combined setup
the shell of code needed to have a functional op mode.

An op mode is considered a set of instructions for a robot to follow in order to understand the world around it.
Even though the SDK provides readily available op mode structures, understanding what concepts the
template is utilizing, and why, helps increase programming knowledge. Follow through this section to learn
more about the op mode template and the programming concepts that make up its structure.

package ;org.firstinspires.ftc.teamcode

import LinearOpMode;com.qualcomm.robotcore.eventloop.opmode.
import Blinker;com.qualcomm.robotcore.hardware.
import Gyroscope;com.qualcomm.robotcore.hardware.
import ColorSensor;com.qualcomm.robotcore.hardware.
import Servo;com.qualcomm.robotcore.hardware.
import DigitalChannel;com.qualcomm.robotcore.hardware.
import TeleOp;com.qualcomm.robotcore.eventloop.opmode.
import Disabled;com.qualcomm.robotcore.eventloop.opmode.
import DcMotor;com.qualcomm.robotcore.hardware.
import DcMotorSimple;com.qualcomm.robotcore.hardware.
import ElapsedTime;com.qualcomm.robotcore.util.

@TeleOp

public class HelloWorld_TeleOp extends LinearOpMode {
 private Gyroscope imu;
 private ColorSensor test_color;
 private DcMotor test_motor;
 private Servo test_servo;
 private DigitalChannel test_touch;

 @Override
 public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 test_color = hardwareMap.get(ColorSensor.class, "test_color");
 test_motor = hardwareMap.get(DcMotor.class, "test_motor");
 test_servo = hardwareMap.get(Servo.class, "test_servo");
 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

 telemetry.addData("Status", "Initialized");
 telemetry.update();
 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()) {
 telemetry.addData("Status", "Running");
 telemetry.update();

 }
 }

The code block provides the structure of the template op mode based on the Hello Robot
Configuration and with some comments missing. If another configuration is being used the code
will be slightly different but many of the underlying concepts are the same.

Programming Concepts

At the start of the op mode there is an that occurs before the class definition. This annotation
states that this is a tele-operated (i.e., driver controlled) op mode:

annotation

@TeleOp

In Java annotations are metadata, or descriptive information about the code. In this case the annotation is

being used to tell the system that this op mode is tele-operated. Changing the annotation from @TeleOp to

@Autonomous will change the code to an autonomous op mode.

public class HelloWorld_TeleOp extends LinearOpMode {

https://en.wikipedia.org/wiki/Java_annotation

You can also see that the OnBot Java editor created five variables for this op mode. These
variables will hold references to the five configured devices that the OnBot Java editor detected in the active
configuration.

private member

 private Gyroscope imu;
 private ColorSensor test_color;
 private DcMotor test_motor;
 private Servo test_servo;
 private DigitalChannel test_touch;

Next, there is an overridden method called runOpMode . Every op mode of type LinearOpMode must
implement this method. This method gets called when a user selects and runs the op mode.

 @Override
 public void runOpMode() {

Hardware mapping was introduced in the configuration section, as a two part process. The first part of the
process was creating a configuration file. The second part of the process is retrieving references to

hardware devices from the hardwareMap . object

 The hardwareMap object is available to use in the runOpMode method. It is an object of type

hardwareMap class.

At the start of the runOpMode method, the op mode uses the hardwareMap object to get references to
the hardware devices that are listed in the Robot Controller’s configuration file:

 imu = hardwareMap.get(Gyroscope.class, "imu");
 test_color = hardwareMap.get(ColorSensor.class, "test_color");
 test_motor = hardwareMap.get(DcMotor.class, "test_motor");
 test_servo = hardwareMap.get(Servo.class, "test_servo");
 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

The hardwareMap.get() method call is used to retrieve the hardware devices and assign them to
variables. The method call accepts two arguments: a reference to the particular class of hardware devices
the device belongs to and the name of the hardware device in the configuration file. The name in the

hardwareMap.get() needs to match the name of the device in the configuration file. If the names do not
match, the op mode will throw a runtime error indicating that it can not find the device.

For more information on the runtime error check out the
section.

Common Errors in Hardware Mapping

In the next few statements of the example, the op mode prompts the user to push the start button to continue.

It uses another object that is available in the runOpMode method. This object is called telemetry and the

https://en.wikipedia.org/wiki/Class_(computer_programming)#Member_accessibility
https://en.wikipedia.org/wiki/Object_(computer_science)

op mode uses the addData method to add a message to be sent to the Driver Station. The op mode then

calls the update method to send the message to the Driver Station. Then it calls the waitForStart
method, to wait until the user pushes the start button on the driver station to begin the op mode run.

Telemetry is the process of collecting and transmitting data. In Robotics telemetry is often used
to output internal data from actuators and sensors to the Driver Station. This data can then be
analyzed by users to make decisions that can improve code.

 telemetry.addData("Status", "Initialized");
 telemetry.update();
 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 All linear op modes should have a waitForStart statement to ensure that the robot will not
begin executing the op mode until the driver pushes the start button.

After a start command has been received, the op mode enters a while loop and keeps iterating in this loop
until the op mode is no longer active (i.e., until the user pushes the stop button on the Driver Station):

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()) {
 telemetry.addData("Status", "Running");
 telemetry.update();

 }

As the op mode iterates in the while loop, it will continue to send telemetry messages with the index of
“Status” and the message of “Running” to be displayed on the Driver Station.

Syntax

Programming languages, much like any language, have a set of guiding rules and principals that allow
statements to be universally understood. Things like punctuation, word structure, and formatting all play a
part in how a line of code is interpreted. In linguistics and computer science the rules that govern the
structure of a sentence are known as . syntax

It is important to understand the syntax for Java, as syntax errors will be common and hard to track without a
basic level of understanding.

Object Oriented Programming

This section dropped a lot of references to methods, object, and classes. These are all intermediate to
advance programming topics often centered around the concept of object oriented programming. The
purpose of the Hello Robot guide is to act as a introductory course to robotics programming rather than deep
dive into programming concepts.

https://en.wikipedia.org/wiki/Java_syntax

However, keep object oriented programming in mind as your skills grow. For now the most important thing to
know is that occasionally methods within the SDK libraries will need to be called in order to perform a

certain task. For instance, the line HelloRobot_TeleOp.opModeIsActive() line calls the method

opModeIsActive , which is the procedure in the SDK that is able to tell when the op mode has been
activate by the driver station phone.

Going forward many of the motor, servo, or sensor specific code will deal with calls to other methods or
classes.

For more information on classes and methods in the SDK check out the . Java Doc

Programming Actuators

Servo Basics

The goal of this section is to cover some of the basics of programming a servo within OnBot Java. By the
end of this section users should be able to control a servo with a gamepad, as well as understand some of
the key programming needs of the servo.

This section is considering the Smart Robot Servo in its default mode. If your servo has been
changed to function in continuous mode or with angular limits it will not behave the same using
the code examples below. You can learn more about the or changing the
Servo's mode via the by clicking the hyperlinks.

 Smart Robot Servo
SRS Programmer

With a typical servo, you can specify a target position for the servo. The servo will turn its motor shaft to
move to the target position, and then maintain that position, even if moderate forces are applied to try and
disturb its position.

https://ftctechnh.github.io/ftc_app/doc/javadoc/index.html
https://docs.revrobotics.com/duo-build/actuators/servos/smart-robot-servo
https://docs.revrobotics.com/duo-build/actuators/servos/srs-programmer

For both Blocks and OnBot Java, you can specify a target position that ranges from 0 to 1 for a servo. For a
servo with a 270° range, if the input range was from 0 to 1 then a signal input of 0 would cause the servo to
turn to point -135°. For a signal input of 1, the servo would turn to +135°. Inputs between the minimum and
maximum have corresponding angles evenly distributed between the minimum and maximum servo angle.
This is important to keep in mind as you learn how to code servos.

Programming a Servo

Add the line test_servo.setPosition(1); to the op mode while loop.

 while (opModeIsActive()) {
 test_servo.setPosition(1);
 telemetry.addData("Status", "Running");
 telemetry.update();

 }

Select Build Everything to build the code.

Try running this op mode on the test bed two times and consider the following questions:

Did the servo move during the first run?

Did the servo move during the second run?

If the servo did not move switch the test_servo.setPosition(1); to

test_servo.setPosition(0); and try again.

The intent of the test_servo.setPosition(); is to set the position of the servo. If the servo is already
in the set position when a code is run, it will not change positions. Lets try adding the line

test_servo.setPosition(0); to the code in the initialization section.

public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 test_color = hardwareMap.get(ColorSensor.class, "test_color");
 test_motor = hardwareMap.get(DcMotor.class, "test_motor");
 test_servo = hardwareMap.get(Servo.class, "test_servo");
 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

 test_servo.setPosition(0);

 telemetry.addData("Status", "Initialized");
 telemetry.update();
 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)

 while (opModeIsActive()) { test_servo.setPosition(1);
 telemetry.addData("Status", "Running");
 telemetry.update();

 }
 }
}

Try running this op mode on the test bed. Give some time between hitting init and hitting play and
consider the following question:

What is different from the previous run?

The test_servo.setPosition(0); that was added in the step above changes the servo position to 0
during the initialization phase, so when the op mode is run the servo will always move to position 1. For
some applications starting the servo in a known state, like at position zero, is beneficial to the operation of a
mechanism. Setting the servo to the known state in the initialization ensures it is in the correct position when
the op mode runs.

Programming a Servo with a Gamepad

The focus of this example is to assign certain servo positions to buttons on the gamepad. For this example
the known state will stay at position 0, so that after initialization the servo will be a the -135 degree position
of the servo range. The following list shows what buttons correspond with which servo position.

Button Degree Position Code Position

Y -135 0

X 0 0.5

B 0 0.5

A 135 1

The best way to switch the servo position will be to use a conditional if/ else if statement. An if
statement considers whether a conditional statement is true or false. If the conditional statement is true a
defined action (like the servo moving) is performed. If the conditional statement is false the action is not
performed.

An if/else if statement takes in multiple different conditional statements. If the first conditional
statement is found to be false then the second conditional state is analyzed. To better understand this
concept consider the following code:

if (gamepad1.y){
 //move to -135 degrees

 test_servo.setPosition(0);

} else if (gamepad1.x || gamepad1.b) {
 //move to 0 degrees
 test_servo.setPosition(0.5);

} else if (gamepad1.a) {
 //move to 135 degrees
 test_servo.setPosition(1);

}

There are three different paths in this if/else if statement. If the first conditional statement is true (the
Y button is pressed) the servo moves to code position 0 and the other conditional statements are ignored. If
the first condition is false (the Y button is not pressed) the second condition is analyzed. This behavior
repeats until a condition is met or all conditions have been tested and found false.

|| is a logical operator in Java. This symbol is the Java equivalent of "or." Using this in a
conditional statement says that either button x or button b can be pressed for this condition to be
considered true.

public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 test_color = hardwareMap.get(ColorSensor.class, "test_color");
 test_motor = hardwareMap.get(DcMotor.class, "test_motor");
 test_servo = hardwareMap.get(Servo.class, "test_servo");

 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

 test_servo.setPosition(0);

 telemetry.addData("Status", "Initialized");
 telemetry.update();
 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()) {
 if (gamepad1.y){
 //move to -135 degrees
 test_servo.setPosition(0);

 } else if (gamepad1.x || gamepad1.b) {
 //move to 0 degrees
 test_servo.setPosition(0.5);

 } else if (gamepad1.a) {
 //move to 135 degrees
 test_servo.setPosition(1);
 }

 telemetry.addData("Status", "Running");
 telemetry.update();

 }
 }
}

Servos and Telemetry

Recall that telemetry is the process of collecting and transmitting data. In Robotics telemetry is used to
output internal data from actuators and sensors to the Driver Station. This data can then be analyzed by
users to make decisions that can improve code.

The most useful telemetry from the servo is the the position of the servo along its 270 degree range. In order
to get that information the following line needs to be used.

test_servo.getPosition();

In the section the telemetry.addData(); line was briefly discussed. This
method call takes in a key and variable parameter and outputs the information to the Driver Station. The key

is a string, or a line of text, that should define the variable. In this case the telemetry.addData(); is
being used to output the position of the servo as it is changed so the key can be "Servo Position" The

parameter however will be the the test_servo.getPosition(); method call.

 programming essentials

double motorPower = 0;
while (opModeIsActive()) {
 if (gamepad1.y){
 //move to -135 degrees
 test_servo.setPosition(0);

 } else if (gamepad1.x || gamepad1.b) {
 //move to 0 degrees
 test_servo.setPosition(0.5);

 } else if (gamepad1.a) {
 //move to 135 degrees
 test_servo.setPosition(1);

 telemetry.addData("Servo Position", test_servo.getPosition());
 telemetry.addData("Status", "Running");
 telemetry.update();

 }

Motor Basics

Modify your op mode to add the motor related code. This can be done by clearing out your current

code modifications or adding the motor related code to your current op mode.

The goal of this section is to cover some of the basics of programming a motor within OnBot Java. By the
end of this section users should be able to control a motor using a gamepad, as well as understand some of
the basics of working with motor encoders.

Driving Motors

Add the line test_motor.setPower(1); to the op mode while loop.

 while (opModeIsActive()) {
 test_motor.setPower(1);

 telemetry.addData("Status", "Running");
 telemetry.update();

 }

Select Build Everything to build the code.

Try running this op mode on the test bed and consider the following questions:

How fast is the motor running?

What happens if you change the power from 1 to 0.3?

What happens if you change the power to -1?

The level of power sent to the motor is dependent on the numerical number assigned to the motor. The
change from 1 to 0.3 decreased the motors speed from 100% of duty cycle to 30% of duty cycle. Meanwhile,
the change to -1 allowed the motor to rotate at 100% duty cycle in the opposite direction. So, power can be
fluctuated to drive a motor forward or backwards.

However, the test_motor.setPower(1); line will run the motor in the assigned direction until
something in the code stops the motor or causes a change in direction.

Driving Motors with the Gamepad

In the previous section you learned how to set the motor to run at a specific power level in a specific
direction. However, in some applications, it may be necessary to control the motor with a gamepad, to easily
change the direction or power level of a mechanism.

For this section lets create a double variable motorPower . This variable will be created within the op
mode but outside of the while loop.

public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 test_color = hardwareMap.get(ColorSensor.class, "test_color");
 test_motor = hardwareMap.get(DcMotor.class, "test_motor");

 test_servo = hardwareMap.get(Servo.class, "test_servo"); test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

 double motorPower = 0;

 telemetry.addData("Status", "Initialized");
 telemetry.update();
 // Wait for the game to start (driver presses PLAY)
 waitForStart();
 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()) {

 telemetry.addData("Status", "Running");
 telemetry.update();

 }
 }
}

A double is numerical data type that can store numbers with decimal points. Since the power, or duty cycle,

of the motor runs on a scale between 1 to -1; the motorPower variable will need to be able to hold
numerical data with decimal points.

Consider the following lines of code:

 motorPower = - this.gamepad1.left_stick_y;
 test_motor.setPower(motorPower);

The line motorPower = - this.gamepad1.left_stick_y; takes an numerical input that
corresponds with the position of the gamepad joystick as it moves along the y-axis and assigns it as the

motorPower variable. The next line test_motor.setPower(motorPower); sets the motor power

equal to the motorPower variable.

Note that for the Logitech F310 gamepads, the Y value of a joystick ranges from -1, when a
joystick is in its topmost position, to +1, when a joystick is in its bottommost position. In order to
change the directional relationship between the motor and the joystick, so that the topmost
position of the joystick correlates with the forward direction of the motor, a negative symbol, or
negation operator needs to be used.

// run until the end of the match (driver presses STOP)
double motorPower = 0;
while (opModeIsActive()) {
 motorPower = - this.gamepad1.left_stick_y;
 test_motor.setPower(motorPower);

 telemetry.addData("Status", "Running");
 telemetry.update();

 }

Motors and Telemetry

Recall that telemetry is the process of collecting and transmitting data. In Robotics telemetry is used to
output internal data from actuators and sensors to the Driver Station. This data can then be analyzed by
users to make decisions that can improve code.

One of the most common forms of telemetry data from motors is the data pulled from the motor encoder. REV
DC Motors, like the Core Hex Motor, are equipped with internal encoders that relays positional information in
the form of counts. In order to get information from the encoders the following line needs to be used:

test_motor.getCurrentPosition();

In the section the telemetry.addData(); line was briefly discussed. This
method call takes in a key and variable parameter and outputs the information to the Driver Station. The key

is a string, or a line of text, that should define the variable. In this case the telemetry.addData(); is
being used to output the position of the motor in the form of encoder counts so the key can be "Encoder

Value." The parameter however will be the the test_motor.getCurrentPosition(); method call.

 programming essentials

double motorPower = 0;
while (opModeIsActive()) {
 motorPower = - this.gamepad1.left_stick_y;
 test_motor.setPower(motorPower);

 telemetry.addData("Encoder Value", test_motor.getCurrentPosition());
 telemetry.addData("Status", "Running");

 telemetry.update();

 }

For more information on programming encoders check out the page. For more
information the counts per revolution metric and how to use it check out the page.

Using Encoders
 Encoders

Programming Sensors

Touch Sensor Basics

The goal of this section is to cover some of the basics of programming a digital device, or Touch Sensor,
within Blocks.

Before programming with a Touch Sensor or other digital device it is important to understand what
a digital device is and what the common applications for digital devices are. Visit the Digital

page for more info. Sensors

Programming a Digital Device

Modify your op mode to add the digital device related code. This can be done by clearing out your
current code modifications or adding the digital device code to your op mode.

The information from digital devices comes in two states, also known as binary states. The most common

way to utilize this information is to use a conditional statement like an if/else statement. The line

test_touch.getState(); collects the binary FALSE/TRUE state from the touch sensor and acts as

the condition for the if/else statement.

if (test_touch.getState()){
 //Touch Sensor is not pressed
} else {
 //Touch Sensor is pressed
 }

The code above highlights the basics structure of the if/else statement for a digital device. The

FALSE/TRUE state of a REV Touch Sensor corresponds with whether or not the button on the Touch
Sensor is pressed. When the button is not pressed the state of the Touch Sensor is true. When the button is
pressed the state of the Touch Sensor is false. This status is reflected by the comments in the code.

The most basic way to use a digital device is to use telemetry to output information, like the status of the

Touch Sensor button. To do this, lets create a string variable called touchStatus . This variable will be
created within the op mode.

 refers to data that consists of a sequence of characters. String datatypes are indicated in
code by a set of quotation marks. For instance, "Hello Robot" is a string but Hello Robot is not.
String

public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 test_color = hardwareMap.get(ColorSensor.class, "test_color");
 test_motor = hardwareMap.get(DcMotor.class, "test_motor");
 test_servo = hardwareMap.get(Servo.class, "test_servo");
 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

 String touchStatus = "";

The line String touchStatus = ""; declares that the variable touchStatus is an empty string

variable. Which means that touchStatus is currently holding a string with zero characters in it.

Add the if/else statement to the while loop.

https://en.wikipedia.org/wiki/String_(computer_science)#String_datatypes

public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 test_color = hardwareMap.get(ColorSensor.class, "test_color");
 test_motor = hardwareMap.get(DcMotor.class, "test_motor");
 test_servo = hardwareMap.get(Servo.class, "test_servo");
 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

 String touchStatus = "";

 telemetry.addData("Status", "Initialized");
 telemetry.update();

 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()) {

 if (test_touch.getState()){
 //Touch Sensor is not pressed
 } else {
 //Touch Sensor is pressed
 }
 telemetry.addData("Status", "Running");
 telemetry.update();

 }
 }

}

Right now the variable touchStatus is empty, but for this example it should change to reflect the status

of the touch sensor. To do this touchStatus should be set to either "Not Pressed" or "Pressed" .

 if (test_touch.getState()){
 //Touch Sensor is not pressed
 touchStatus = "Not Pressed";

 } else {
 //Touch Sensor is pressed
 touchStatus = "Pressed";
 }

To display in the information assigned to touchStatus , telemetry needs to be used. In the

section the telemetry.addData() line was briefly discussed. This method call takes in a
key and variable parameter and outputs the information to the Driver Station. The key is a string, or a line of

text, that should define the variable. In this case the telemetry.addData(); is being used to output

changes in the touchStatus variable so "Touch Status" would be a good key. The parameter will

be the touchStatus variable. Add this line above the telemetry.update(); line in the while loop.

 programming

essentials

telemetry.addData("Touch Sensor", touchStatus);

Digital Devices as Limit Switches

One of the most common uses for a digital device like a touch sensor is to use it as a . The intent
of a limit switch is to stop a mechanism, like an arm or lift, before it exceeds its physical limitations. In this
application power needs to be cut from the motor when the limit is met.

limit switch

Programming a limit switch requires the same if/else logic applied in the previous section. If the touch
sensor state is true (it is not pressed) the motor will have power. Else (it is pressed) the motor will not have
power.

 if (test_touch.getState()){
 //Touch Sensor is not pressed
 test_motor.setPower(0.3);

} else {
 //Touch Sensor is pressed
 test_motor.setPower(0);
 }

The code block above introduces the basics of a limit switch. Like with most sensors, its good to have
telemetry that updates the Driver Station on the status of the sensor. Consider the following code:

public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");

 test_color = hardwareMap.get(ColorSensor.class, "test_color");
 test_motor = hardwareMap.get(DcMotor.class, "test_motor");
 test_servo = hardwareMap.get(Servo.class, "test_servo");
 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

 String touchStatus = "";

 telemetry.addData("Status", "Initialized");
 telemetry.update();

 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()) {

 if (test_touch.getState()){
 //Touch Sensor is not pressed
 test_motor.setPower(0.3);
 touchStatus = "Not Pressed";

 } else {
 //Touch Sensor is pressed

 test_motor.setPower(0); touchStatus = "Pressed";
 }

 telemetry.addData("Touch Sensor:", touchStatus);
 telemetry.addData("Status", "Running");
 telemetry.update();

 }
 }
}

Hello Robot - Robot Control

With the basics of controlling actuators and getting feedback from sensors is understood from
, it is time to start configuring and programming our robot for Teleoperated and Autonomous control!

Hello Robot -
Test Bed

Section Goals of Section

Create a Basic Robot
Introduces a potential robot to work with as well as
the configuration file used in the following section

Drivetrain Basics
Differences between differential and
omnidirectional drivetrains and their affect on
teleoperated control types.

Before continuing it is recommended to complete, at minimum, a drivetrain. There are a few
different options depending on the kit being used. For this guide the Class Bot V2 is used.

 for the Class Bot V2!
Check

out the build guide for full building instructions

Create a Basic Robot

The graphic below highlights the major hardware components of the Class Bot V2. These components are
important to understand for the configuration process.

(1) Control Hub

(2) Drive Motors

https://docs.revrobotics.com/duo-build/ftc-starter-kit-class-bot

1

2

2

3

4

5

6

7(3) Arm Motor

(4) Claw Servo

(5) Touch Sensor

(6) Battery

(7) Switch

The section focused on configuring the components in the Test Bed. In order to
continue forward with the Robot Control programming sections, a new configuration file must be made for
the components on the robot. It is your choice what variable names you would like to assign to your robot,
but for reference this guide will use the following names for each hardware component.

Hello Robot - Configuration

Hardware Component Hardware Type Name

Right Drive Motor
REV Robotics UltraPlanetary
HD Hex Motor

rightmotor

Left Drive Motor
REV Robotics UltraPlanetary
HD Hex Motor

leftmotor

Arm Motor REV Robotics Core Hex Motor arm

Claw Servo Servo claw

Touch Sensor REV Touch Sensor touch

Drivetrain Basics

Before continuing it is important to understand the mechanical behavior of different drivetrains. The two most
common drivetrain categories types are Differential and Omnidirectional. The Class Bot's drivetrain is a
differential drivetrain. The table below highlights the main features of these two types of drivetrains.

Differential Omnidirectional

Differential Drivetrains Omnidirectional Drivetrains

Most common type of drivetrain
Can move in any direction due to rollers on the
wheels

Moves along a central axis
Varies power to each wheel to change heading or
strafe

Applies more power to one side of the drivetrain
than the other to change heading

More complex programming

Can have different names depending on the
number of motors, wheels, and wheel types used
(4WD, 6WD, West Coast)

Requires more than 2 motors (depending on
specific type and configuration)

Teleoperated Control Types

There are a number of different ways to control a robot teleoperated. When using the REV Control System
this is done with a Driver Station Device and gamepads. There are various ways to use a controller to drive
a differential drivetrain. Two of the conventional ways are Tank Drive and Arcade Drive.

Tank Drive

For tank drive, each side of the differential drivetrain is mapped to its own joystick. Changing the position of
each joystick allows the drivetrain to steer and change its heading. Sample code exists in the Robot
Controller Application to control a differential drivetrain in this way.

Arcade Drive

For arcade drive, each side of the differential drivetrain is controlled by a single joystick. Changing position
of the joystick changes the power applied to each side of the drivetrain allowing for a given command.
Arcade drives typically have left/right movement of the joystick set to spin the robot about its axis with

forward/back moving the robot forward and reverse. More information on Arcade drive are found in the
 and sections.

Robot
Navigation - Blocks Robot Navigation - OnBot Java

With the robot configured, a basic understanding of drivetrains, and teleoperated control types, we can move
forward to programming the drivetrain to get the robot moving.

Robot Navigation - Blocks

Introduction to Robot Navigation

As alluded to in the Hello Robot - Robot Control section, robot control comes in many different forms. One of
the control types to consider for robots with drivetrains, is robot navigation.

Robot navigation as a concept is dependent on the type of drivetrain and the type of operation mode. For
instance, the code to control a mecanum drivetrain differs from the code used to control a differential
drivetrain. There is also a difference between coding for teleoperated driving, with a gamepad, or coding for
autonomous, where each movement of the robot must be defined within code.

The following section goes through some of the basics of programming for a differential drivetrain, as well as
how to set up a teleoperated arcade style drivetrain code. The concepts and logic highlighted in this section
are applicable to autonomous control, including the section . Elapsed Time

Sections Goals of Section

Basics of Programming Drivetrains
What to consider when

 and how to apply this to an
.

programming drivetrain
motors arcade style
teleoperated control

Basics of Programming Drivetrains

For controlling the Class Bot V2 drivetrain, being able to control two motors simultaneously is important.
This is done through the dual motor block within Blocks. To access the dual motor block, at the top of the
Categorize Blocks section there is a drop down menu for Actuators. Selecting DcMotor will drop down the
options Dual and another drop down menu Extended. Select Dual to access the dual motor blocks.

Programming Drivetrain Motors

Add the block to op mode while loop.

When there are multiple of the same type of variable (such as multiple Dc Motor variables) the
variable specific blocks will choose a default variable based on alphabetical order. For this
example Op Mode Dc Motor blocks will default to the arm variable.

Use the variable drop down menu on the block to change from arm to rightmotor.

Before moving on try running the code as is and consider the following questions:

What behavior is the robot exhibiting?

What direction is the robot spinning in?

When motors run at different speeds they spin along their center pivot point. But the motors are
both set to a power (or duty cycle) of 1?

DC Motors are capable of spinning in two different directions depending on the current flow: clockwise and
counter clockwise. When using a positive power value the Control Hub sends current to the motor for it to
spin in a clockwise direction.

With the Class Bot and current code, both motors are currently set to run in the clockwise direction. If you set
the robot on blocks and run the code again though, you can see that the motors run in opposing directions.
With the mirrored way the motors mount to the drivetrain, one motor is naturally the inverse of the other.

Why would the inverse motor cause the robot to spin in a circle? Both speed and direction of rotation of the
wheels impact the overall direction the robot moves in. In this case, both motors were assigned to have the
same power and direction but how the motors transfer motion to the wheels, causes the robot to spin instead
of moving forward.

Check the section for more information on the mechanics of transferring
motion and power.

Introduction to Motion

In the info block above you were asked to determine which direction the robot spun in. The robot pivots in
the direction of the inversed motor. For instance, when the right motor is the inversed motor the robot will
pivot to the right. If the left motor is the inversed motor the robot will pivot to the left.

The Affect of Drivetrain Motors on Drivetrain Movement

https://docs.revrobotics.com/duo-build/actuators/introduction-to-motion

For the Class Bot, the robot pivots to the right, so the right motor will be reversed. Add

 to the op mode class, under the

comment block.

Adding the block changes the direction of the right motor

so that both motors will run in the same direction when power is set to one.

Teleoperated Driving - Arcade Style

Recall that when the motors were running in opposing directions the robot spun in circles. This same logic
will be used to control the robot using the arcade style of control mentioned in the Hello Robot - Autonomous
Robot section.

Programming with gamepads

To start, create two variables and . Add the and blocks to the while loop.x y

 will be assigned as , which is the y-axis of the right joystick. y

Remember positive/negative values inputted by the gamepad's y-axis are inverse of the
positive/negative values of the motor.

Assign as the , which is the x axis of the right gamepad joystick. The x-

axis of the joystick does not need to be inverted.

x

The and block sets

assign values from the gamepad joystick to and . As previously mentioned, the joystick gives values

along a two dimension coordinate system. receives the value from the y- axis and receives the value

from the x axis Both axis output values between 1 and 1

x y
y x

To better understand consider the following table. The table shows the expected value generated from
moving the joystick all the way in one direction, along the axis. For instance, when the joystick is pushed all
the way in the upwards direction the coordinate values are (0,1).

The table below assumes that the the values from the gamepad have been inverted in code

when assigned to the variable .

y
y

Joystick Direction ​ x ​ y

​

​

0 1

​

0 -1

​

-1 0

​

1 0

Now that you have a better understanding of how the physical movement of the gamepad affects the
numerical inputs given to your Control System; its time to consider how to control the drivetrain using the
joystick. Recall, from the Programming Drivetrain Motors section, that the speed and direction of a motor

plays a large part in how the drivetrain moves. The numerical outputs for determine the

speed and direction of the motors. For instance, when both motors are set to 1 they move in the forward
direction at full speed (or 100% of duty cycle).

Much like the gamepads, the numerical value for setPower is in a range of -1 to 1. The absolute value of
the assigned number determines percentage of duty cycle. As an example, 0.3 and -0.3 both indicate that
the motor is operating at a duty cycle of 30%. The sign of the number indicates the direction the motor is
rotating in. To better understand, consider the following graphic.

0

No Movement

ForwardReverse

Full SpeedFull Speed

-1

Full Speed

1

When a motor is assigned a setPower value between -1 and 0, the motor will rotate in the direction it
considers to be reverse. When a motor is assigned a value between 0 and 1, it will rotate forward.

In the Programming Drivetrain Motors section, it was discussed that a robot rotates when the motors are
moving in opposing directions. However, this has more to do with both speed and direction. To think of it

numerically, a differential drivetrain will turn to the right when the setPower value for the right motor is
less than that of the left motor. This is exhibited in the following example.

1-1 0
L
R

1-1 0
LR

1-1 0
LR

When both motors are the robot will run at full speed in a mostly straight line. However,

when the rightmotor is running in the same direction but at a lower speed, such as the

robot will turn or rotate to the right. This is likely to be an arching movement that is not as sharp as a full
pivot. In contrast when the rightmotor is set to full speed but in the opposite direction of the leftmotor, the
robot pivots to the right. So, mathematically the following is considered to be true:

​

rightMotor = leftMotor Forward or Reverse

rightMotor > leftMotor Left Turn

rightMotor < leftMotor Right Turn

As previously implied, and send values to

the Control System from the game pad joystick. In contrast, interprets numerical

information set in the code and sends the appropriate current to the motors to dictate how the motors
behave.

In an arcade drive, the following joy stick inputs (directions) need to correspond with the following outputs
(motor power values).

Joystick Direction (,)x y rightmotor leftmotor

(0,1) 1 1

(0,-1) -1 -1

(-1,0) 1 -1

(1,0) -1 1

To get the outputs expressed in the table above, the gamepad values must be assigned to each motor in a
meaningful way, where. Algebraic principles can be used to determine the two formulas needed to get the
values. However, the formulas are provided below.

rightmotor = y − x
leftmotor = y + x

From the math menu grab the and blocks and add them to the respective

Next add the and to the formula blocks.

With this you now have a functional teleoperated arcade drive!

Elapsed Time - Blocks

Introduction to Elapsed Time

One way to create an autonomous code is to use a timer to define which actions should occur when. Within
the SDK actions can be set to a timer by using ElapsedTime.

Timers consist of two main categories: count up and count down. In most applications a timer is considered
to be a device that counts down from a specified time interval. For instance, the timer on a phone or a
microwave. However, some timers, like stopwatches, count upwards from zero. These types of timers
measure the amount of time that has elapsed.

ElapsedTime is a count up timer. Registering the amount of time elapsed from the start of a set event, like
the starting of a stopwatch. In this case, it is the amount of time elapsed from when the timer is created or
reset within the code.

The ElapsedTime timer starts counting the amount of time elapsed from the point of its creation within a
code. For instance, in this section ElapsedTime will be created in the section of code that occurs when the
op mode is initialized. There is no option to stop the ElapsedTime timer. Instead, the

 block can be used within your code to reset the timer at various

intervals.

Once the timer has been reset, the amount of time that has elapsed is queried by calling blocks like

 . The time given by the queried blocks can be used in loops to

dictate how long a specific action should take place.

Sections Goals of Section

Basics of programming with Elapsed Time
Learning the logic needed to use elapsed time for
autonomous control.

Basics of Programming with Elapsed Time

Since this section focuses on creating an autonomous program using ElapsedTime it is important to
understand where the elapsed time related blocks are located. At the top of the Categorize Blocks section
there is a drop down menu for Utilities. The utilities drop down is a list of various utilities in alphabetical
order. Towards the bottom of the the list select Time drop down menu. From there you can select Elapsed
Time.

Programming with Elapsed Time

Start by creating a new op mode call HelloWorld_ElapsedTime using the BasicOpMode sample.

When creating an op mode a decision needs to be made on whether or not to set it to
autonomous mode. For applications under 30 seconds, typically required for competitive game
play changing the op mode type to autonomous is recommended. For applications over 30
seconds, setting the code to the autonomous op mode type will limit your autonomous code to 30
seconds of run time. If you plan on exceeding the 30 seconds built into the SDK, keeping the
code as a teleoperated op mode type is recommended.

For information on how op modes work please visit the section. Introduction to Programming

For more information on how to change the op mode type check out the
section.

 Test Bed - Blocks

Create a variable named runtime .

For information on creating variables in blocks please revisit the section. Test Bed - Blocks

Add the block to the op mode below the comment block.

In order to utilize elements of the ElapsedTime , runtime will act as the ElapsedTime variable. Add

the block to the block.

Before moving on to the rest of the ElapsedTime structure lets go ahead and add the motor related

blocks. Add to the op mode to the while loop.

When there are multiple of the same type of variable (such as multiple Dc Motor variables) the
variable specific blocks will choose a default variable based on alphabetical order. For this
example Op Mode Dc Motor blocks will default to the arm variable. Click the arrow next to the
motor name to change the arm motor variable to the rightmotor variable. Use the variable drop

down menu on the block to change from arm to rightmotor.

 If you recall from article; the motors on the drivetrain mirror each other. The
mirrored nature of the motor mounting causes the motors to rotate in opposing directions. In order to remedy
this discrepancy the direction of the right motor needs to be reversed. Add the

 block to the op mode under the the

 block set.

Programming Drivetrain Motors

The goal is to have the motor move forward for 3 seconds. To accomplish this the While loops needs to be
edited so that it triggers when the op mode is active and the ElapsedTime timer is less than or equal to 3

seconds. Lets start by creating the less than or equal to condition. Grab the from the Logic

menu.

Select the block from the Elapsed Time menu. Drop the block

into the left side of the block. Use the drop down menu to change the generic

 to the variable.

Grab the block from the Math menu.

Add the number block to the right side of the block. Change the number block to 3.

Right now the is equal to three. Use the arrow next to the equal sign to

choose the less than or equal to sign from the drop down menu.

Set this block set to the side for now. Grab an block from the Logic menu

Add the call block to the left side of the block.

Add the block set to the right side of the block.

This block set will replace the block that is currently attached

to the while loop. With this block set in place the while loop will now activate when both conditions of the
and block are true.

It is important to know that, within a linear op mode, a while loop must always have the

 Boolean as a condition. This condition ensures

that the while loop will terminate when the stop button is pressed.

Use tape to mark the distance from where the robot starts to where you would like it to end up. Try
running the code using the following conditions:

Press the init button and immediately press play

Press the init button, wait 30 seconds and then press play

What difference in behavior did you notice?

Recall that the ElapsedTime timer starts when the timer is created, which occurs where the

block is placed. Since the timer is created prior to

, the timer will start when the program is initialized.

If you tested the program you may have noticed that the robot didn't move the during the second run.
Depending on how long you wait to start after initialization the timer may be close to or past 3 seconds by
the time the program is played. To keep this from happening the timer should be reset once the op mode is

active. Grab the call block. Use the drop down menu on the

variable block to change the to .

Add the to the op mode beneath the comment and above

the while loop.

As mentioned in previous sections, it can be beneficial to have a telemetry output when testing code. In the
following example telemetry is used to output the amount of time that has passed with the timer.

The above code will allow your motor to drive straight for 3 seconds. Additional movements can be added
by duplicating the while loop. Right click the while loop block and select duplicate

Once you have duplicated the while loop you can change some of the basic information like motor power or

the time interval of the loop. You will also need to add a block between the

two loops.

Full Code Example

Encoder Navigation - Blocks

In the previous section you learned about how to use Elapsed Time to allow your robot to navigate the world
around it autonomously. When starting out many of the robot actions can be accomplished by turning on a
motor for a specific amount of time. Eventually, these time-based actions may not be accurate or repeatable
enough. Environmental factors, such as the state of battery charge during operation and mechanisms
wearing in through use, can all affect time-based actions. Fortunately, there is a way to give feedback to the
robot about how it is operating by using sensors; devices that are used to collect information about the robot
and the environment around it.

With Elapsed Time, in order to get the robot to move to a specific distance, you had to estimate the amount
of time and the percentage of duty cycle needed to get from point a to point b. However, the REV motors
come with built in encoders, which provide feedback in the form of ticks (or counts) per revolution of the
motor. The information provided by the encoders can be used to move the motor to a target position, or a
target distance.

Moving the motors to a specific position, using the encoders, removes any potential inaccuracies or
inconsistencies from using Elapsed Time. The focus of this section is to move the robot to a target position
using encoders.

There are two articles in that go through the basics of Encoders. goes through
the basics of the different types of motor modes, as well as a few application examples of using

these modes in code. In this section we will focus on using RUN_TO_POSITION .

Using Encoders

The other article, , focuses on the general functionality of an encoder. Encoders

It is recommended that you review both articles before moving on with this guide.

Basics of Programming with Encoders

Start by creating a basic op mode called HelloRobot_EncoderAuton.

When creating an op mode a decision needs to be made on whether or not to set it to
autonomous mode. For applications under 30 seconds, typically required for competitive game
play changing the op mode type to autonomous is recommended. For applications over 30
seconds, setting the code to the autonomous op mode type will limit your autonomous code to 30
seconds of run time. If you plan on exceeding the 30 seconds built into the SDK, keeping the
code as a teleoperated op mode type is recommended.

For information on how op modes work please visit the section. Introduction to Programming

For more information on how to change the op mode type check out the
section.

 Test Bed - Blocks

Add the block to the op mode under the

.This will change the direction of the rotation of the right motor to be the same

direction as the left motor.

For more information on the directionality of motor check out the
 section.

Basics of Programming
Drivetrains

Recall from that using RUN_TO_POSITION mode requires a three step process. The first

step is setting target position. To set target position, grab the block and add it to the op

mode under the comment. To get a target position that equates to a target distance

requires so calculations, which will be covered later. For now, set target position to 1000 ticks.

Using Encoders

When there are multiple of the same type of variable (such as multiple Dc Motor variables) the
variable specific blocks will choose a default variable based on alphabetical order. For this
example Op Mode Dc Motor blocks will default to the arm variable. Click the arrow next to the
motor name to change the arm motor variable to the rightmotor variable. Use the variable drop
down menu on the block to change from arm to rightmotor.

The next step is to set both motors to the RUN_TO_POSITION mode. Place the

 block beneath the block.

The main focus of the three step process is to set a target, tell the robot to move to that target, and at what
speed (or velocity) the robot should get to that target. Normally, the recommended next step is to calculate
velocity and set a target velocity based on ticks. However, this requires quite a bit of math to find the
appropriate velocity. For testing purposes, its more important to make sure that the main part of the code is

working before getting too deep into the creation of the code. Since the function was

covered in previous sections and will communicate to the system what relative speed (or in this case duty
cycle) is needed to get to the target, this can be used in the place of velocity for now.

 Add the block to the op mode beneath the

block. Change the duty cycle (or power) of both motors to 0.8, instead of 1.

Now that all three RUN_TO_POSITION steps have been added to the code the code can be tested.
However, if you want to wait for the motor to reach its target position before continuing in your program, you
can use a while loop that checks if the motor is busy (not yet at its target). For this program lets edit the

 block.

Recall that, within a linear op mode, a while loop must always have the

 Boolean as a condition. This condition ensures

that the while loop will terminate when the stop button is pressed.

 Grab an block from the logic menu and add it to the while loop. On the left side of the

 block add the block. On the right side add the

 block.

Embed the in another block. Place the

 on the right side of the block. On the left side add

the block.

Right now the while loop is waiting for the right and left motors to reach their respective targets.
There may be occasions when you want to wait for both motors to reach their target position, in

this case the can be used.

Save and run the op mode two times in a row. Does the robot move as expected the second
time?

Try turning the Control Hub off and then back on. How does the robot move?

In the section, it is clarified that ell encoder ports start at 0 ticks when the Control
Hub is turned on. Since you did not turn off the Control Hub in between runs, the second time you ran the op
mode the motors were already at, or around, the target position. When you run a code, you want to ensure
that certain variables start in a known state. For the encoder ticks, this can be achieved by setting the mode

to . Add this block to the op mode in the initialization section.

Each time the op mode is initialized, the encoder ticks will be reset to zero.

Basic Encoder Concepts

For more information on the motor mode STOP_AND_RESET_ENCODERS check out the
 section of the Using Encoders guide. STOP_AND_RESET_ENCODERS

Converting Encoder Ticks to a Distance

In the previous section, the basic structure needed to use RUN_TO_POSITION was created. The

placement of within the code, set the target position to 1000 ticks. What is the

distance from the starting point of the robot and the point the robot moves to after running this code?

Rather than attempt to measure, or estimate, the distance the robot moves, the encoder ticks can be
converted from amount of ticks per revolution of the encoder to how many encoder ticks it takes to move the
robot a unit of distance, like a millimeter or inch. Knowing the amount of ticks per a unit of measure allows
you to set a specific distance. For instance, if you work through the conversion process and find out that a
drivetrain takes 700 ticks to move an inch, this can be used to find the total number of ticks need to move the
robot 24 inches.

Reminder that the basis for this guide is the . The REV DUO Build System is a
metric system. Since part of the conversion process references the diameter of the wheels, this
section will convert to ticks per mm.

Class Bot V2

When using encoders built into motors, converting from ticks per revolution to ticks per unit of measure
moved requires the following information:

Ticks per revolution of the encoder shaft

Total gear reduction on the motor

Including gearboxes and motion transmission components like gears, sprockets and chain, or belts
and pulleys

Circumference of the driven wheels

Ticks per Revolution

The amount of ticks per revolution of the encoder shaft is dependent on the motor and encoder.
Manufacturers of motors with built-in encoders will have information on the amount of ticks per revolution.
For HD Hex Motors the encoder counts 28 ticks per revolution of the motor shaft.

Visit the manufacturers website for your motor or encoders for more information on encoder
counts. For HD Hex Motors or Core Hex Motors visit the documentation. Motor

Total Gear Reduction

Since ticks per revolution of the encoder shaft is before any gear reduction calculating the total gear
reduction is needed. This includes the gearbox and any addition reduction from motion transmission
components. To find the total gear reduction use the . Compound Gearing formula

For the Class Bot V2 there are two UltraPlanetary Cartridges, 4:1 and 5:1, and an additional gear reduction
from the UltraPlanetary Output to the wheels, 72T:45T ratio.

The UltraPlanetary Cartridges use the nominal gear ratio as a descriptor. The actual gear ratios
can be found in the . UltraPlanetary Users Manual's Cartridge Details

Using the compound gearing formula for the Class Bot V2 the total gear reduction is:

​ ∗
1

3.61
​ ∗

1
5.23

​ =
45
72

30.21

Unlike the the spur gears used to transfer motion to the wheels, the UltraPlanetary Gearbox
Cartridges are planetary gear systems. To make calculations easier the gear ratios for the
Cartridges are already reduced.

https://docs.revrobotics.com/duo-build/ftc-starter-kit-class-bot
https://docs.revrobotics.com/duo-build/actuators/motors
https://docs.revrobotics.com/duo-build/actuators/gears/gears-advanced#compound-gearing
https://docs.revrobotics.com/ultraplanetary/cartridge-details#actual-cartridge-gear-ratios

Circumference of the Wheel

The Class Bot V2 uses the 90mm Traction Wheels. 90mm is the diameter of the wheel. To get the
appropriate circumference use the following formula

circumference = diameter ∗ π

You can calculate this by hand, but for the purpose of this guide, this can be calculated within the code.

Due to wear and manufacturing tolerances, the diameter of some wheels may be nominally
different. For the most accurate results consider measuring your wheel to confirm that the
diameter is accurate.

To summarize, for the Class Bot V2 the following information is true:

​

Ticks per revolution 28 ticks

Total gear reduction 30.21

Circumference of the wheel ​ 90mm ∗ π

Each of these pieces of information will be used to find the number of encoder ticks (or counts) per mm that
the wheel moves. Rather than worry about calculating this information by hand, these values can be added
to the code as constant variables. To do this create three variables:

COUNTS_PER_MOTOR_REV

DRIVE_GEAR_REDUCTION

WHEEL_CIRCUMFERENCE_MM

The common naming convention for constant variables is known as CONSTANT_CASE, where
the variable name is in all caps and words are separated by and underscore.

Add the variables to the initialization section of the op mode.

Once the variables are created and added to the op mode, use the blocks to set the variables to the

respective values. For WHEEL_CIRCUMFERENCE_MM a combination of the , , and

 blocks to get the circumference of the wheel. The

Now that these three variables have been defined, we can use them to calculate two other variables: the
amount of encoder counts per rotation of the wheel and the number of counts per mm that the wheel moves.

To calculate counts per wheel revolution multiple COUNTS_PER_MOTOR_REV by

DRIVE_GEAR_REDUCTION Use the following formula:

y = a ∗ b

Where,

 = COUNTS_PER_MOTOR_REVa

 = DRIVE_GEAR_REDUCTION b

 = COUNTS_PER_WHEEL_REVy

Once COUNTS_PER_WHEEL_REV is calculated, use it to calculate the counts per mm that the wheel

moves. To do this divide the COUNTS_PER_WHEEL_REV by the WHEEL_CIRCUMFERENCE_MM . Use the
following formula.

x = ​ =
c

(a ∗ b)
​

c
y

Where,

 = COUNTS_PER_MOTOR_REVa

 = DRIVE_GEAR_REDUCTIONb

 = WHEEL_CIRCUMFERENCE_MMc

 = COUNTS_PER_WHEEL_REVy

 = COUNTS_PER_MMx

COUNTS_PER_WHEEL_REV will be created as a separate variable from COUNTS_PER_MM as it
is used in calculating a target velocity.

Create these variables in Blocks and add then to the op mode under the other constant variables.

Again math blocks need to be used to define these variables. Lets start with the

COUNTS_PER_WHEEL_REV variable. Add a to the

block. Add the and blocks to either side

of the block.

Since COUNTS_PER_WHEEL_REV has been calculated it can be used to calculate COUNTS_PER_MM

add the to the . On the left side of the add the

 block. On the right side of the add the

 .

Once COUNTS_PER_WHEEL_MM is set, this completes the conversion process, and all constant variables
are set.

Moving to a Target Distance

Now that you have created the constant variables needed to calculate the amount of ticks per mm moved,
you can use this to set a target distance. For instance, if you would like to have the robot move forward two

feet, converting from feet to millimeters and multiplying by the COUNTS_PER_MM will give you the amount of
counts (or ticks) needed to reach that distance.

Create two more variables called leftTarget and rightTarget . Add the and

 blocks to the op mode above the block.

Right now the main distance factor is COUNTS_PER_MM , however you may want to go a distance that is in
the imperial system, such as 2 feet (or 24 inches). The target distance in this case will need to be converted
to mm. To convert from feet to millimeters use the following formula:

d ​ =(mm) d ​ ×(f t) 304.8

If you convert 2 feet to millimeters, it comes out the be 609.6 millimeters. For the purpose of this guide, lets

go ahead an round this to be 610 millimeters. Multiply 610 millimeters by the COUNTS_PER_MM variable to
get the number of ticks needed to move the robot 2 feet. Since the intent is to have the robot move in a

straight line, set both the leftTarget and rightTarget , to be equal to 610 * COUNTS_PER_MM

Edit the so that both motors are set to the appropriate target position. To do this add

the and blocks to their respective motor.

Setting Velocity

Velocity is a closed loop control within the SDK that uses the encoder counts to determine the approximate
power/speed the motors need to go in order to meet the set velocity. When working with encoder setting a
velocity is recommended over setting a power level, as it offers a higher level of control.

To set a velocity, its important to understand the maximum velocity in RPM your motor is capable of. For the
Class Bot V2 the motors are capable of a maximum RPM of 300. With a drivetrain, you are likely to get better
control by setting velocity lower than the maximum. In this case, lets set the velocity to 175 RPM

Recall that setVelocity is measure in ticks per second.

Since RPM is the amount of revolutions per minute a conversion needs to be made from RPM to ticks per
second. To do this divide the RPM by 60, to get the amount of rotations per second. Rotations per second

can the be multiplied by COUNTS_PER_WHEEL_REV , to get the amount of ticks per second.

TPS = ​ ∗
60

175
CP W R

Create a new variable called TPS. Add the to the op mode under the

comment block.

Add a block to the block. On the right side of the block

add the . One the left side of the add the

 block. Add the chosen RPM to the left side of the block and 60 to the

right side.

Now that the target ticks per second has been set, swap the block for a

block. Add the to both motors.

With the velocity set, this is the final thing needed to complete the objective of driving in a straight line.
Consider adding telemetry and other hardware components as you begin fleshing out your full autonomous
code.

Turning the Drivetrain Using RUN_TO_POSITION

In the section, the mechanism of was discussed.

 dictates what direction and speed a motor moves in. On a drivetrain the combined

Robot Navigation - Blocks

In RUN_TO_POSITION mode the encoder counts are used instead of to dictate

directionality of the motor. If a target position value is greater than the current position of the encoder, the
motor moves forward. If the target position value is less than the current position of the encoder, the motor
moves backwards

Since speed an directionality impacts how a robot turns, target position and velocity need to be edited to get
the robot to turn. Consider the following code:

The rightTarget has been changed to be a negative target position. Assuming that the encoder starts

at zero due to STOP_AND_RESET_ENCODER this causes the robot to turn to the right. Velocity is the same
for both motors. If you try running this code, you may notice that the robot pivots along its center of rotation.
To get a wider turn changing the velocity so that the right motor is running at a lower velocity than the left
motor. Adjust the velocity and target position as needed to get the turn you need.

For more information on how direction and speed impact the movement of a robot please refer to

the explanation of in the section.Robot Navigation

Robot Navigation - OnBot Java

Introduction to Robot Navigation

As alluded to in the Hello Robot - Robot Control section, robot control comes in many different forms. One of
the control types to consider for robots with drivetrains, is robot navigation.

Robot navigation as a concept is dependent on the type of drivetrain and the type of operation mode. For
instance, the code to control a mecanum drivetrain differs from the code used to control a differential
drivetrain. There is also a difference between coding for teleoperated driving, with a gamepad, or coding for
autonomous, where each movement of the robot must be defined within code.

The following section goes through some of the basics of programming for a differential drivetrain, as well as
how to set up a teleoperated arcade style drivetrain code. The concepts and logic highlighted in this section
will be applicable the autonomous control section Elapsed Time.

Sections Goals of Section

Basics of Programming Drivetrains
What to consider when

 and how to apply this to an
.

programming drivetrain
motors arcade style
teleoperated control

Basics of Programming Drivetrains

Programming Drivetrain Motors

Start by creating a basic op mode called DualDrive .

Visit the section for more information on creating an op mode. The op
mode below focuses on hardware mapping only the relevant drivetrain motors.

Test Bed - OnBot Java

package ;org.firstinspires.ftc.teamcode

import LinearOpMode;com.qualcomm.robotcore.eventloop.opmode.
import TeleOp;com.qualcomm.robotcore.eventloop.opmode.
import DcMotor;com.qualcomm.robotcore.hardware.
import DcMotorSimple;com.qualcomm.robotcore.hardware.

@TeleOp
public class DualDrive extends LinearOpMode {
 private DcMotor rightmotor;
 private DcMotor leftmotor;

 @Override
 public void runOpMode() {

 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");

 waitForStart();

 while (opModeIsActive()) {

 }
 }
}

Since the focus of this section is creating a functional drivetrain in code, lets started by adding

rightmotor.setPower(1); and leftmotor.setPower(1); to the op more while loop.

while (opModeIsActive()) {
 rightmotor.setPower(1);
 leftmotor.setPower(1);
 }

Before moving on try running the code as is and consider the following questions:

What behavior is the robot exhibiting?

What direction is the robot spinning in?

When motors run at different speeds they spin along their center pivot point. But the motors are
both set to a power (or duty cycle) of 1?

DC Motors are capable of spinning in two different directions depending on the current flow: clockwise and
counter clockwise. When using a positive power value the Control Hub sends current to the motor for it to
spin in a clockwise direction.

With the Class Bot and current code, both motors are currently set to run in the clockwise direction. If you set
the robot on blocks and run the code again though, you can see that the motors run in opposing directions.
With the mirrored way the motors mount to the drivetrain, one motor is naturally the inverse of the other.

Why would the inverse motor cause the robot to spin in a circle? Both speed and direction of rotation of the
wheels impact the overall direction the robot moves in. In this case, both motors were assigned to have the
same power and direction but how the motors transfer motion to the wheels, causes the robot to spin instead
of moving forward.

Check the section for more information on the mechanics of transferring
motion and power.

Introduction to Motion

In the info block above you were asked to determine which direction the robot spun in. The robot pivots in
the direction of the inversed motor. For instance, when the right motor is the inversed motor the robot will
pivot to the right. If the left motor is the inversed motor the robot will pivot to the left.

https://docs.revrobotics.com/duo-build/actuators/introduction-to-motion

The Affect of Drivetrain Motors on Drivetrain Movement

For the Class Bot, the robot pivots to the right, so the right motor will be reversed. Add the line

rightmotor.setDirection(DcMotorSimple.Direction.REVERSE); to the op mode under the
variable declarations.

public void runOpMode() {

 float x;
 double y;

 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");

 rightmotor.setDirection(DcMotorSimple.Direction.REVERSE);

 waitForStart();

 while (opModeIsActive()) {
 rightmotor.setPower(1);
 leftmotor.setPower(1);
 }
 }

Adding the rightmotor.setDirection(DcMotorSimple.Direction.REVERSE); code line
reverses (or inverses) the direction of the right motor. Both motors now consider the same direction forward
an

Teleoperated Driving - Arcade Style

Recall that when the motors were running in opposing directions the robot spun in circles. This same logic
will be used to control the robot using the arcade style of control mentioned in the Hello Robot - Autonomous
Robot section.

Programming with gamepads

To start, create two variables and . Both variables will be doubles. x y

public void runOpMode() {
 double x;
 double y;

 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");

 rightmotor.setDirection(DcMotorSimple.Direction.REVERSE);

 waitForStart();

 Assign as y = -gamepad1.right_stick_y; , which is the y-axis of the right joystick. y

Remember positive/negative values inputted by the gamepad's y-axis are inverse of the
positive/negative values of the motor.

Assign the as the x = gamepad1.right_stick_x; , which is the x axis of the right gamepad

joystick. The x-axis of the joystick does not need to be inverted.

x

while (opModeIsActive()) {
 x = gamepad1.right_stick_x;
 y = -gamepad1.right_stick_y;

 rightmotor.setPower(1);
 leftmotor.setPower(1);
 }

Setting x = gamepad1.right_stick_x; and y = -gamepad1.right_stick_y; assigns

values from the gamepad joystick to and . As previously mentioned, the joystick gives values along a

two dimension coordinate system. receives the value from the y- axis and receives the value from the x-

axis. Both axis output values between -1 and 1.

x y
y x

To better understand consider the following table. The table shows the expected value generated from
moving the joystick all the way in one direction, along the axis. For instance, when the joystick is pushed all
the way in the upwards direction the coordinate values are (0,1).

The table below assumes that the the values from the gamepad have been inverted in code

when assigned to the variable .

y
y

Joystick Direction ​ x ​ y

​

​

0 1

​

0 -1

​

-1 0

​

1 0

Now that you have a better understanding of how the physical movement of the gamepad affects the
numerical inputs given to your Control System; its time to consider how to control the drivetrain using the
joystick.

Recall, from the section, that the speed and direction of a motor Programming Drivetrain Motors

plays a large part in how the drivetrain moves.

The numerical outputs for setPower determine the speed and direction of the motors. For instance, when
both motors are set to 1 they move in the forward direction at full speed (or 100% of duty cycle). Much like

the gamepads, the numerical value for setPower is in a range of -1 to 1. The absolute value of the
assigned number determines percentage of duty cycle. As an example, 0.3 and -0.3 both indicate that the
motor is operating at a duty cycle of 30%. The sign of the number indicates the direction the motor is rotating
in. To better understand, consider the following graphic.

0

No Movement

ForwardReverse

Full SpeedFull Speed

-1

Full Speed

1

When a motor is assigned a setPower value between -1 and 0, the motor will rotate in the direction it
considers to be reverse. When a motor is assigned a value between 0 and 1, it will rotate forward.

In the section, it was discussed that a robot rotates when the motors are
moving in opposing directions. However, this has more to do with both speed and direction. To think of it

numerically, a differential drivetrain will turn to the right when the setPower value for the right motor is less
than that of the left motor. This is exhibited in the following example.

Programming Drivetrain Motors

1-1 0
L
R

1-1 0
LR

1-1 0
LR

When both motors are rightmotor.setPower(1); leftmotor.setPower(1); the robot will run at

full speed in a mostly straight line. However, when the rightmotor is running in the same direction but at a

lower speed, such as rightmotor.setPower(0.3); leftmotor.setPower(1); the robot will
turn or rotate to the right. This is likely to be an arching movement that is not as sharp as a full pivot. In

contrast when the rightmotor is set to full speed but in the opposite direction of the leftmotor , the
robot pivots to the right So mathematically the following is considered to be true:

​

rightmotor.setPower =
leftmotor.setPower

Forward or Reverse

rightmotor.setPower >
leftmotor.setPower

Left Turn

rightmotor.setPower <
leftmotor.setPower

Right Turn

As previously implied, gamepad1.right_stick_y and gamepad1.right_stick_x send values to

the Control System from the game pad joystick. In contrast, the setPower function interprets numerical
information set in the code and sends the appropriate current to the motors to dictate how the motors
behave.

In an arcade drive, the following joy stick inputs (directions) need to correspond with the following outputs
(motor power values).

Joystick Direction (X,Y) rightmotor leftmotor

(0,1) 1 1

(0,-1) -1 -1

(-1,0) 1 -1

(1,0) -1 1

To get the outputs expressed in the table above, the gamepad values must be assigned to each motor in a
meaningful way, where. Algebraic principles can be used to determine the two formulas needed to get the
values. However, the formulas are provided below.

rightmotor = y − x
leftmotor = y + x

Rather than setPower(1); both the motors can be set to the above formulas. For instance, the right

motor can be set as rightmotor.setPower(y-x); .

while (opModeIsActive()) {
 x = gamepad1.right_stick_x;
 y = -gamepad1.right_stick_y;

 rightmotor.setPower(y-x);
 leftmotor.setPower(y+x);
 }

With this you now have a functional teleoperated arcade drive. From here you can start adding hardware
mapping for the other pieces of robot hardware. Below is an outline of the expected code for the Class Bot
with full hardware mapping.

package ;org.firstinspires.ftc.teamcode

import LinearOpMode;com.qualcomm.robotcore.eventloop.opmode.
import Blinker;com.qualcomm.robotcore.hardware.
import Servo;com.qualcomm.robotcore.hardware.
import Gyroscope;com.qualcomm.robotcore.hardware.
import DigitalChannel;com.qualcomm.robotcore.hardware.

import TeleOp;com.qualcomm.robotcore.eventloop.opmode.
import Disabled;com.qualcomm.robotcore.eventloop.opmode.
import DcMotor;com.qualcomm.robotcore.hardware.
import DcMotorSimple;com.qualcomm.robotcore.hardware.
import ElapsedTime;com.qualcomm.robotcore.util.

@TeleOp

public class DualDrive extends LinearOpMode {
 private Blinker control_Hub;
 private DcMotor arm;
 private Servo claw;
 private Gyroscope imu;
 private DcMotor leftmotor;
 private DcMotor rightmotor;
 private DigitalChannel touch;

 @Override
 public void runOpMode() {
 double x;
 double y;

 control_Hub = hardwareMap.get(Blinker.class, "Control Hub");
 arm = hardwareMap.get(DcMotor.class, "arm");
 claw = hardwareMap.get(Servo.class, "claw");

 imu = hardwareMap.get(Gyroscope.class, "imu");
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
 touch = hardwareMap.get(DigitalChannel.class, "touch");

 rightmotor.setDirection(DcMotorSimple.Direction.REVERSE);

 telemetry.addData("Status", "Initialized");
 telemetry.update();

 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()) {
 x = gamepad1.right_stick_x;
 y = -gamepad1.right_stick_y;

 rightmotor.setPower(y-x);
 leftmotor.setPower(y+x);

 telemetry.addData("Status", "Running");
 telemetry.update();

 }
 }

Elapsed Time - OnBot Java

Introduction to Elapsed Time

One way to create an autonomous code is to use a timer to define which actions should occur when. Within
the SDK actions can be set to a timer by using ElapsedTime.

Timers consist of two main categories: count up and count down. In most applications a timer is considered
to be a device that counts down from a specified time interval. For instance, the timer on a phone or a
microwave. However, some timers, like stopwatches, count upwards from zero. These types of timers
measure the amount of time that has elapsed.

ElapsedTime is a count up timer. Registering the amount of time elapsed from the start of a set event, like
the starting of a stopwatch. In this case, it is the amount of time elapsed from when the timer is instantiated or
reset within the code.

The ElapsedTime timer starts counting the amount of time elapsed from the point of its creation within a
code. For instance, in this section ElapsedTime will be created (or instantiated) in the section of code that
occurs when the op mode is initialized. There is no option to stop the ElapsedTime timer. Instead, the reset()
function can be used within your code to reset the timer at various intervals.

One the timer has been reset, the amount of time that has elapsed can be queried by calling methods like
time(), seconds(), or milliseconds(). The time given by the queried methods can be used in loops to dictate
how long a specific action should take place.

For more information on the ElapsedTime object check out the . Java Docs

Sections Goals of Section

Basics of programming with Elapsed Time
Learning the logic needed to use elapsed time for
autonomous control.

Programming with Elapsed Time

Start by creating a new op mode called HelloWorld_ElapsedTime using the

BasicOpMode_Linear sample. There are other feature you can select that may make things easier as
you begin to develop your autonomous op modes. For instance, as you may recall, selecting Setup Code
for Configured Hardware creates the necessary references to the hardware map. Another selection you

can make is for the code to be setup as an autonomous op mode. This adds the @Autonomous annotation
that distinguishes the code as an autonomous op mode in the Driver Station Application.

https://ftctechnh.github.io/ftc_app/doc/javadoc/index.html

When creating an op mode a decision needs to be made on whether or not to set it to
autonomous mode. For applications under 30 seconds, typically required for competitive game
play changing the op mode type to autonomous is recommended. For applications over 30
seconds, setting the code to the autonomous op mode type will limit your autonomous code to 30
seconds of run time. If you plan on exceeding the 30 seconds built into the SDK, keeping the
code as a teleoperated op mode type is recommended.

For information on how op modes work please visit the section. Introduction to Programming

New File

HelloWorld ElapsedTime

org/firstinspires/ftc/teamcode

org.firstinspires.ftc.teamcode

BasicOpMode Linear

java .

Autonomous TeleOp Not an OpMode Preserve Sample

Disable OpMode

Setup Code for Configured Hardware

Cancel OK

File Name

Location

Sample

Selecting the features discussed above will allow you to start with the following code.

package ;org.firstinspires.ftc.teamcode

import LinearOpMode;com.qualcomm.robotcore.eventloop.opmode.
import AnalogInput;com.qualcomm.robotcore.hardware.
import Gyroscope;com.qualcomm.robotcore.hardware.
import ColorSensor;com.qualcomm.robotcore.hardware.
import Servo;com.qualcomm.robotcore.hardware.
import DigitalChannel;com.qualcomm.robotcore.hardware.
import Autonomous;com.qualcomm.robotcore.eventloop.opmode.
import TeleOp;com.qualcomm.robotcore.eventloop.opmode.
import Disabled;com.qualcomm.robotcore.eventloop.opmode.
import DcMotor;com.qualcomm.robotcore.hardware.
import DcMotorSimple;com.qualcomm.robotcore.hardware.

@Autonomous

public class HelloWorld_ElapsedTime extends LinearOpMode {
 private DcMotor leftMotor;
 private DcMotor rightMotor;
 private DcMotor arm;

 private Servo claw;
 private DigitalChannel touch;
 private Gyroscope imu;

 @Override
 public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 leftMotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightMotor = hardwareMap.get(DcMotor.class, "rightmotor");
 arm = hardwareMap.get(DcMotor.class, "arm");
 claw = hardwareMap.get(Servo.class, "claw");
 touch = hardwareMap.get(DigitalChannel.class, "touch");

 telemetry.addData("Status", "Initialized");
 telemetry.update();

 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()){
 telemetry.addData("Status", "Running");
 telemetry.update();
 }
 }
}

Since the focus of this section is Elapsed Time, a variable of ElapsedTime and an instance of

ElapsedTime needs to be created. To do this the following line is needed

private ElapsedTime runtime = new ElapsedTime();

The above line performs two actions. A private ElapsedTime variable called runtime is created. Once

runtime is created and defined as an ElapsedTime variable, it can hold the relevant time information

and data. The other part of the line runtime = new ElapsedTime(); creates an instance of the

ElapsedTime timer object and assigns it to the runtime variable.

Add this line to the op mode with the other private variables.

public class HelloWorld_ElapsedTime extends LinearOpMode {
 private DcMotor leftMotor;
 private DcMotor rightMotor;
 private DcMotor arm;
 private Servo claw;
 private DigitalChannel touch;
 private Gyroscope imu;
 private ElapsedTime runtime = new ElapsedTime();

The goal for this example is to have a series of actions performed on timed intervals, like driving forward for

three seconds. Another way to think about it is that the robot drives forward while the ElapsedTime timer

is less than or equal to three seconds or runtime.seconds() <= 3.0 . For this particular example the
best way to achieve this goal is to use a while loop. Replace the default op mode while loop with the
following loop.

 waitForStart();
 while (runtime.seconds() <= 3.0) {

 }

It is important to know that, within a linear op mode, a while loop must always have the

opModeIsActive() Boolean as a condition. This condition ensures that the while loop will
terminate when the stop button is pressed.

While loops run when the condition is true and stop when the condition is false. In this case, the while loop

should only start if both conditions (opModeIsActive() and runtime.seconds() <= 3.0) are

true. The while loop should terminate when the runtime.seconds() > 3 is greater than three seconds

or the stop button on the driver station is pressed. To accomplish this the logical operator && needs to be
used.

&& is a logical operator in Java. This symbol is the Java equivalent of "and." Using this in a
conditional statement requires that both statements need to be true in order for the overall
condition to be true.

 waitForStart();
 while (opModeIsActive() && (runtime.seconds() <= 3.0)) {

 }

Recall that the ElapsedTime timer starts when it is instantiated or reset. Since the timer is being
instantiated when the runtime variable is being created, and the variable creations are happening before the

waitForStart(); command is written; the timer will start when the op mode is initialized rather than
when the op mode is started. This can cause issues on consistency in the robots performance, depending
on the delay between initialization and start.

Consider the following scenario:

In a competition setting, teams are often required to initialize their robot prior to the start of a
match. This means that a robot can sit in initialization anywhere from a few seconds to a few

minutes. If an autonomous code is centered around using an ElapsedTime timer that begins
upon instantiation, the longer a robot is sitting in initialization the less likely it is to run as
expected.

In order to avoid issues from a time delay between initialization and start, a timer reset can be added to the

code Add the line runtime reset() ; between the waitForStart(); command and the while loop

 waitForStart();
 runtime.reset();
 while (opModeIsActive() && (runtime.seconds() <= 3.0)) {

 }

Now the timer is reset , lets go ahead and add the motor related code. If you recall from
 article; the motors on the drivetrain mirror each other. The mirrored nature of the motor

mounting causes the motors to rotate in opposing directions. In order to remedy this discrepancy the
direction of the right motor needs to be reversed. Add the following lines of code to the op mode above the

waitForStart(); command.

Programming
Drivetrain Motors

rightMotor.setDirection(DcMotor.Direction.REVERSE);

Now, within the while loop add the lines leftmotor.setPower(1); and

rightmotor.setPower(1); to set both motors to run at full speed in the forward direction.

package ;org.firstinspires.ftc.teamcode

import LinearOpMode;com.qualcomm.robotcore.eventloop.opmode.
import AnalogInput;com.qualcomm.robotcore.hardware.
import Gyroscope;com.qualcomm.robotcore.hardware.
import ColorSensor;com.qualcomm.robotcore.hardware.
import Servo;com.qualcomm.robotcore.hardware.
import DigitalChannel;com.qualcomm.robotcore.hardware.
import Autonomous;com.qualcomm.robotcore.eventloop.opmode.
import TeleOp;com.qualcomm.robotcore.eventloop.opmode.
import Disabled;com.qualcomm.robotcore.eventloop.opmode.
import DcMotor;com.qualcomm.robotcore.hardware.
import DcMotorSimple;com.qualcomm.robotcore.hardware.
import ElapsedTime;com.qualcomm.robotcore.util.

@Autonomous

public class HelloWorld_ElapsedTime extends LinearOpMode {
 private DcMotor leftMotor;
 private DcMotor rightMotor;
 private DcMotor arm;
 private Servo claw;
 private DigitalChannel touch;
 private Gyroscope imu;
 private ElapsedTime runtime = new ElapsedTime();

 @Override
 public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");

 leftMotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightMotor = hardwareMap.get(DcMotor.class, "rightmotor");
 arm = hardwareMap.get(DcMotor.class, "arm");
 claw = hardwareMap.get(Servo.class, "claw");
 touch = hardwareMap.get(DigitalChannel.class, "touch");

 rightMotor.setDirection(DcMotor.Direction.REVERSE);

 telemetry.addData("Status", "Initialized");
 telemetry.update();
 // Wait for the game to start (driver presses PLAY)

 waitForStart();
 // run until the end of the match (driver presses STOP)

 runtime.reset();
 while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
 leftMotor.setPower(1);
 rightMotor.setPower(1);
 }

You now have the basic code you need to have your robot drive forward for three seconds. This should give

you a basic sense of coding with ElapsedTime . Other actions like opening and closing a claw, or lifting
an arm can be coded into your autonomous program.

As advised in previous sections, it is beneficial to add telemetry to certain code to get the feedback data you
want or need. For this example, the telemetry will display how many seconds have elapsed for each leg of
the robots journey.

while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
 leftMotor.setPower(1);
 rightMotor.setPower(1);
 telemetry.addData("Leg 1", runtime.seconds());
 telemetry.update();
 }

For this particular guide, the end goal is to test the accuracy of a robot driving forward from point a to point b
and then driving backwards back to point a. In order to do that another section of code based off the timer
needs to be written. One way to do this is to to copy the while loop that you already made and make the
necessary edits like switching the direction of power to the motors.

runtime.reset();
while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
 leftMotor.setPower(1);
 rightMotor.setPower(1);
 telemetry.addData("Leg 1", runtime.seconds());
 telemetry.update();
 }

runtime.reset();

while (opModeIsActive() && (runtime.seconds() <= 3.0)) { leftMotor.setPower(-1);
 rightMotor.setPower(-1);
 telemetry.addData("Leg 2", runtime.seconds());
 telemetry.update();
 }

Notice that an additional runtime.reset(); was added to the code above. The other option
for a second while loop would have involved adding an additional condition to the while loop.
Such as:

while(opModeIsActive() && (runtime.seconds() > 3.0) &&
runtime.seconds() <=6.0)

The choice to reset the timer before starting a new leg of the robots journey was made to reduce
the amount of code changes that may need to be made while testing the code.

Full Code Example

package ;org.firstinspires.ftc.teamcode

import LinearOpMode;com.qualcomm.robotcore.eventloop.opmode.
import AnalogInput;com.qualcomm.robotcore.hardware.
import Gyroscope;com.qualcomm.robotcore.hardware.
import ColorSensor;com.qualcomm.robotcore.hardware.
import Servo;com.qualcomm.robotcore.hardware.
import DigitalChannel;com.qualcomm.robotcore.hardware.
import Autonomous;com.qualcomm.robotcore.eventloop.opmode.
import TeleOp;com.qualcomm.robotcore.eventloop.opmode.
import Disabled;com.qualcomm.robotcore.eventloop.opmode.
import DcMotor;com.qualcomm.robotcore.hardware.
import DcMotorSimple;com.qualcomm.robotcore.hardware.
import ElapsedTime;com.qualcomm.robotcore.util.

@Autonomous

public class HelloWorld_ElapsedTime extends LinearOpMode {
 private DcMotor leftMotor;
 private DcMotor rightMotor;
 private DcMotor arm;
 private Servo claw;
 private DigitalChannel touch;
 private Gyroscope imu;
 private ElapsedTime runtime = new ElapsedTime();

 @Override
 public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");

 leftMotor = hardwareMap.get(DcMotor.class, "leftmotor"); rightMotor = hardwareMap.get(DcMotor.class, "rightmotor");
 arm = hardwareMap.get(DcMotor.class, "arm");
 claw = hardwareMap.get(Servo.class, "claw");
 touch = hardwareMap.get(DigitalChannel.class, "touch");
 leftMotor.setDirection(DcMotor.Direction.FORWARD); // Set to REVERSE if using AndyMark
 rightMotor.setDirection(DcMotor.Direction.REVERSE);

 telemetry.addData("Status", "Initialized");
 telemetry.update();
 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)

 runtime.reset();
 while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
 leftMotor.setPower(1);
 rightMotor.setPower(1);
 telemetry.addData("Leg 1", runtime.seconds());
 telemetry.update();
 }

 runtime.reset();
 while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
 leftMotor.setPower(-1);
 rightMotor.setPower(-1);
 telemetry.addData("Leg 2", runtime.seconds());
 telemetry.update();
 }

 }
 }

Encoder Navigation - OnBot

In the previous section you learned about how to use Elapsed Time to allow your robot to navigate the world
around it autonomously. When starting out many of the robot actions can be accomplished by turning on a
motor for a specific amount of time. Eventually, these time-based actions may not be accurate or repeatable
enough. Environmental factors, such as the state of battery charge during operation and mechanisms
wearing in through use, can all affect time-based actions. Fortunately, there is a way to give feedback to the
robot about how it is operating by using sensors; devices that are used to collect information about the robot
and the environment around it.

With Elapsed Time, in order to get the robot to move to a specific distance, you had to estimate the amount
of time and the percentage of duty cycle needed to get from point a to point b. However, the REV motors
come with built in encoders, which provide feedback in the form of ticks (or counts) per revolution of the

motor. The information provided by the encoders can be used to move the motor to a target position, or a
target distance.

Moving the motors to a specific position, using the encoders, removes any potential inaccuracies or
inconsistencies from using Elapsed Time. The focus of this section is to move the robot to a target position
using encoders.

There are two articles in that go through the basics of Encoders. goes through
the basics of the different types of motor modes, as well as a few application examples of using

these modes in code. In this section we will focus on using RUN_TO_POSITION .

Using Encoders

The other article, , focuses on the general functionality of an encoder. Encoders

It is recommended that you review both articles before moving on with this guide.

Basics of Programming with Encoders

Start by creating a basic op mode called HelloRobot_EncoderAuton .

When creating an op mode a decision needs to be made on whether or not to set it to
autonomous mode. For applications under 30 seconds, typically required for competitive game
play changing the op mode type to autonomous is recommended. For applications over 30
seconds, setting the code to the autonomous op mode type will limit your autonomous code to 30
seconds of run time. If you plan on exceeding the 30 seconds built into the SDK, keeping the
code as a teleoperated op mode type is recommended.

For information on how op modes work please visit the section. Introduction to Programming

For more information on how to change the op mode type check out the
section.

Test Bed - OnBot Java

The op mode structure below is simplified and only includes the necessary components needed
to create the encoder based code.

package ;org.firstinspires.ftc.teamcode

import LinearOpMode;com.qualcomm.robotcore.eventloop.opmode.
import Autonomous;com.qualcomm.robotcore.eventloop.opmode.
import TeleOp;com.qualcomm.robotcore.eventloop.opmode.
import Disabled;com.qualcomm.robotcore.eventloop.opmode.
import DcMotor;com.qualcomm.robotcore.hardware.
import DcMotorSimple;com.qualcomm.robotcore.hardware.

@Autonomous //sets the op mode as an autonomous op mode

public class HelloWorld_EncoderAuton extends LinearOpMode {
 private DcMotor leftmotor;
 private DcMotor rightmotor;

 @Override
 public void runOpMode() {
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

 // Wait for the game to start (driver presses PLAY)
 waitForStart();

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()){

 }
 }
}

As with all drivetrain related navigation, the directionality of one of the motors needs to be reversed in order
for both motors to move in the same direction. Since the Class Bot V2 is still being used add the line

rightmotor.setDirection(DcMotor.Direction.REVERSE); to the code beneath the

rightmotor = hardwareMap.get(DcMotor.class, "rightmotor"); code line.

public void runOpMode() {
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

 rightmotor.setDirection(DcMotor.Direction.REVERSE);

 waitForStart();

For more information on the directionality of motor check out the
 section.

Basics of Programming
Drivetrains

Recall from that using RUN_TO_POSITION mode requires a three step process. The first
step is setting target position. To set target position add the lines

leftmotor.setTargetPosition(1000); and rightmotor.setTargetPosition(1000);
to the op mode after the waitForStart(); command. To get a target position that equates to a target
distance requires so calculations, which will be covered later. For now, set target position to 1000 ticks.

Using Encoders

waitForStart();

leftmotor.setTargetPosition(1000);
rightmotor.setTargetPosition(1000);

while (opModeIsActive()){

 }

The next step is to set both motors to the RUN_TO_POSITION mode. Add the lines

leftmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION); and

rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION); to your code, beneath the

setTargetPosition code lines.

waitForStart();

leftmotor.setTargetPosition(1000);
rightmotor.setTargetPosition(1000);

leftmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);

while (opModeIsActive()){

 }

The main focus of the three step process is to set a target, tell the robot to move to that target, and at what
speed (or velocity) the robot should get to that target. Normally, the recommended next step is to calculate
velocity and set a target velocity based on ticks. However, this requires quite a bit of math to find the
appropriate velocity. For testing purposes, its more important to make sure that the main part of the code is

working before getting too deep into the creation of the code. Since the setPower function was covered in
previous sections and will communicate to the system what relative speed (or in this case duty cycle) is

needed to get to the target, this can be used in the place of setVelocity for now.

Add the lines to set the power of both motors to 80% of duty cycle.

waitForStart();

leftmotor.setTargetPosition(1000);
rightmotor.setTargetPosition(1000);

leftmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);

leftmotor.setPower(0.8);
rightmotor.setPower(0.8);

while (opModeIsActive()){

 }

Now that all three RUN_TO_POSITION steps have been added to the code the code can be tested.
However, if you want to wait for the motor to reach its target position before continuing in your program, you

can use a while loop that checks if the motor is busy (not yet at its target). For this program lets edit the

Recall that, within a linear op mode, a while loop must always have the opModeIsActive()
Boolean as a condition. This condition ensures that the while loop will terminate when the stop
button is pressed.

Edit the while loop to include the leftmotor.isBusy() and righmotor.isBusy() functions. This
will check if the left motor and right motor are busy running to a target position. The while loop will stop when
either motor reaches the target position.

while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())) {

}

Right now the while loop is waiting for the either motor to reach the target. There may be
occasions when you want to wait for both motors to reach their target position, in this case the
following loop can be used.

while (opModeIsActive() && (leftmotor.isBusy() ||
rightmotor.isBusy()))

Save and run the op mode two times in a row. Does the robot move as expected the second
time?

Try turning the Control Hub off and then back on. How does the robot move?

In the section, it is clarified that all encoder ports start at 0 ticks when the Control
Hub is turned on. Since you did not turn off the Control Hub in between runs, the second time you ran the op
mode the motors were already at, or around, the target position. When you run a code, you want to ensure
that certain variables start in a known state. For the encoder ticks, this can be achieved by setting the mode

to STOP_AND_RESET_ENCODER . Add this block to the op mode in the initialization section. Each time the
op mode is initialized, the encoder ticks will be reset to zero.

Basic Encoder Concepts

public void runOpMode() {
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

 rightmotor.setDirection(DcMotor.Direction.REVERSE);

 leftmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
 rightmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);

 waitForStart();

For more information on the motor mode STOP_AND_RESET_ENCODERS check out the
 section of the Using Encoders guide. STOP_AND_RESET_ENCODERS

Converting Encoder Ticks to a Distance

In the previous section, the basic structure needed to use RUN_TO_POSITION was created. The

placement of leftmotor.setTargetPosition(1000); and

rightmotor.setTargetPosition(1000); within the code, set the target position to 1000 ticks.
What is the distance from the starting point of the robot and the point the robot moves to after running this
code?

Rather than attempt to measure, or estimate, the distance the robot moves, the encoder ticks can be
converted from amount of ticks per revolution of the encoder to how many encoder ticks it takes to move the
robot a unit of distance, like a millimeter or inch. Knowing the amount of ticks per a unit of measure allows
you to set a specific distance. For instance, if you work through the conversion process and find out that a
drivetrain takes 700 ticks to move an inch, this can be used to find the total number of ticks need to move the
robot 24 inches.

Reminder that the basis for this guide is the . The REV DUO Build System is a
metric system. Since part of the conversion process references the diameter of the wheels, this
section will convert to ticks per mm.

Class Bot V2

For the conversion process the following information is needed:

Ticks per revolution of the encoder

Total gear reduction on the motor

Including gearboxes and motion transmission components like gears, sprockets and chain, or belts
and pulleys

Circumference of the driven wheels

Ticks per Revolution

The amount of ticks per revolution of the encoder shaft is dependent on the motor and encoder.
Manufacturers of motors with built-in encoders will have information on the amount of ticks per revolution.
For HD Hex Motors the encoder counts 28 ticks per revolution of the motor shaft.

Visit the manufacturers website for your motor or encoders for more information on encoder
counts. For HD Hex Motors or Core Hex Motors visit our documentation. Motor

Total Gear Reduction

Since ticks per revolution of the encoder shaft is before any gear reduction calculating the total gear
reduction is needed. This includes the gearbox and any addition reduction from motion transmission

https://docs.revrobotics.com/duo-build/ftc-starter-kit-class-bot
https://docs.revrobotics.com/duo-build/actuators/motors

components. To find the total gear reduction use the .Compound Gearing formula

For the Class Bot V2 there are two UltraPlanetary Cartridges, 4:1 and 5:1, and an additional gear reduction
from the UltraPlanetary Output to the wheels, 72T:45T ratio.

The UltraPlanetary Cartridges use the nominal gear ratio as a descriptor. The actual gear ratios
can be found in the . UltraPlanetary Users Manual's Cartridge Details

Using the compound gearing formula for the Class Bot V2 the total gear reduction is:

​ ∗
1

3.61
​ ∗

1
5.23

​ =
45
72

30.21

Unlike the the spur gears used to transfer motion to the wheels, the UltraPlanetary Gearbox
Cartridges are planetary gear systems. To make calculations easier the gear ratios for the
Cartridges are already reduced.

Circumference of the Wheel

The Class Bot V2 uses the 90mm Traction Wheels. 90mm is the diameter of the wheel. To get the
appropriate circumference use the following formula

circumference = diameter ∗ π

You can calculate this by hand, but for the purpose of this guide, this can be calculated within the code.

Due to wear and manufacturing tolerances, the diameter of some wheels may be nominally
different. For the most accurate results consider measuring your wheel to confirm that the
diameter is accurate.

To summarize, for the Class Bot V2 the following information is true:

​

Ticks per revolution 28 ticks

Total gear reduction 30.21

Circumference of the wheel ​ 90mm ∗ π

Each of these pieces of information will be used to find the number of encoder ticks (or counts) per mm that
the wheel moves. Rather than worry about calculating this information by hand, these values can be added

https://docs.revrobotics.com/duo-build/actuators/gears/gears-advanced#compound-gearing
https://docs.revrobotics.com/ultraplanetary/cartridge-details#actual-cartridge-gear-ratios

to the code as constant variables. To do this create three variables:

COUNTS_PER_MOTOR_REV

DRIVE_GEAR_REDUCTION

WHEEL_CIRCUMFERENCE_MM

The common naming convention for constant variables is known as CONSTANT_CASE, where
the variable name is in all caps and words are separated by and underscore.

Add the variables to op mode class, where the hardware variables are defined. Defining the variables within
the bounds of the class but outside of the op mode, allows them to be referenced in other methods of

functions within the class. To ensure variables are referenceable they are set as static final double
variables. Static allows references to the variables anywhere within the class and final dictates that these
variables are constant and unchanged elsewhere within the code. Since these variables are not integers
they are classified as double variables.

public class HelloWorld_EncoderAuton extends LinearOpMode {
 private DcMotor leftmotor;
 private DcMotor rightmotor;

 static final double COUNTS_PER_MOTOR_REV = 28.0;
 static final double DRIVE_GEAR_REDUCTION = 30.21;
 static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * Math.PI;

Now that these three variables have been defined, they can be used to calculate two other variables: the
amount of encoder counts per rotation of the wheel and the number of counts per mm that the wheel moves.

To calculate counts per wheel revolution multiple COUNTS_PER_MOTOR_REV by

DRIVE_GEAR_REDUCTION Use the following formula:

y = a ∗ b

Where,

 = COUNTS_PER_MOTOR_REVa

 = DRIVE_GEAR_REDUCTION b

 = COUNTS_PER_WHEEL_REVy

Create the COUNTS_PER_WHEEL_REV variable within the code. This will also be a static final
double variable.

public class HelloWorld_EncoderAuton extends LinearOpMode {
 private DcMotor leftmotor;
 private DcMotor rightmotor;

 static final double COUNTS_PER_MOTOR_REV = 28.0;
 static final double DRIVE_GEAR_REDUCTION = 30.24;
 static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * 3.14;

 static final double COUNTS_PER_WHEEL_REV = COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCT

Once COUNTS_PER_WHEEL_REV is calculated, use it to calculate the counts per mm that the wheel

moves. To do this divide the COUNTS_PER_WHEEL_REV by the WHEEL_CIRCUMFERENCE_MM . Use the
following formula.

x = ​ =
c

(a ∗ b)
​

c
y

Where,

 = COUNTS_PER_MOTOR_REVa

 = DRIVE_GEAR_REDUCTIONb

 = WHEEL_CIRCUMFERENCE_MMc

 = COUNTS_PER_WHEEL_REVy

 = COUNTS_PER_MMx

Create the COUNTS_PER_MM variable within the code. This will also be a static final double
variable.

public class HelloWorld_EncoderAuton extends LinearOpMode {
 private DcMotor leftmotor;
 private DcMotor rightmotor;

 static final double COUNTS_PER_MOTOR_REV = 28.0;
 static final double DRIVE_GEAR_REDUCTION = 30.24;
 static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * 3.14;

 static final double COUNTS_PER_WHEEL_REV = COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCT
 static final double COUNTS_PER_MM = COUNTS_PER_WHEEL_REV / WHEEL_CIRCUMFEREN

COUNTS_PER_WHEEL_REV will be created as a separate variable from COUNTS_PER_MM as it
is used in calculating a target velocity.

Moving to a Target Distance

Now that you have created the constant variables needed to calculate the amount of ticks per mm moved,
you can use this to set a target distance. For instance, if you would like to have the robot move forward two

feet, converting from feet to millimeters and multiplying by the COUNTS_PER_MM will give you the amount of
counts (or ticks) needed to reach that distance.

Create two more variables called leftTarget and rightTarget . These variables can be fluctuated
and edited in your code to tell the motors what positions to go to, rather than place them with the constant

variables, create these variables within the op mode but above the waitForStart(); command.

The setTargetPosition(); function takes in a integer (or int) data type as its parameter,

rather than a double. Since both the leftTarget and rightTarget will be used to set the
target position, create both variables as int variables.

public void runOpMode() {
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

 rightmotor.setDirection(DcMotor.Direction.REVERSE);

 leftmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
 rightmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);

 int leftTarget;
 int rightTarget;

 waitForStart();

Right now the main distance factor is COUNTS_PER_MM , however you may want to go a distance that is in
the imperial system, such as 2 feet (or 24 inches). The target distance in this case will need to be converted
to mm. To convert from feet to millimeters use the following formula:

d ​ =(mm) d ​ ×(f t) 304.8

If you convert 2 feet to millimeters, it comes out the be 609.6 millimeters. For the purpose of this guide, lets

go ahead an round this to be 610 millimeters. Multiply 610 millimeters by the COUNTS_PER_MM variable to
get the number of ticks needed to move the robot 2 feet. Since the intent is to have the robot move in a

straight line, set both the leftTarget and rightTarget , to be equal to 610 * COUNTS_PER_MM

As previously mentioned the setTargetPosition(); function requires that its parameter

must be an integer data type. The leftTarget and rightTarget variables have been set to

be integers, however the COUNTS_PER_MM variable is a double. Since these are two different
data types, a conversion of data types needs to be done.

In this case the COUNTS_PER_MM needs to be converted to an integer. This is as simple as
adding the line (int) in front of the double variable. However, you need to be cautious of potential

rounding errors. Since COUNTS_PER_MM is part of an equation it is recommended that you

convert to an integer after the result of the equation is found. The example of how to do this is
exhibited below.

int leftTarget = (int)(610 * COUNTS_PER_MM);
int rightTarget = (int)(610 * COUNTS_PER_MM);

Edit the setTargetPosition(); lines so that both motors are set to the appropriate target position. To

do this add the leftTarget and rightTarget variables to their respective motor.

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

Try running the code and observing the behavior of the robot. Consider some of the following

Is the robot moving forward by two feet?

Does the robot seem to be moving in straight line?

Is the code running without error?

Setting Velocity

Velocity is a closed loop control within the SDK that uses the encoder counts to determine the approximate
power/speed the motors need to go in order to meet the set velocity. When working with encoder setting a
velocity is recommended over setting a power level, as it offers a higher level of control.

To set a velocity, its important to understand the maximum velocity in RPM your motor is capable of. For the
Class Bot V2 the motors are capable of a maximum RPM of 300. With a drivetrain, you are likely to get better
control by setting velocity lower than the maximum. In this case, lets set the velocity to 175 RPM

Recall that setVelocity is measure in ticks per second.

Create a new double variable called TPS . Add TPS the to the op mode under where rightTarget is
defined.

public void runOpMode() {
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

 rightmotor.setDirection(DcMotor.Direction.REVERSE);

 leftmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
 rightmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);

 int leftTarget = (int)(610 * COUNTS_PER_MM);

 int rightTarget = (int)(610 * COUNTS_PER_MM); double TPS;

 waitForStart();

Since RPM is the amount of revolutions per minute a conversion needs to be made from RPM to ticks per
second. To do this divide the RPM by 60, to get the amount of rotations per second. Rotations per second

can the be multiplied by COUNTS_PER_WHEEL_REV , to get the amount of ticks per second.

TPS = ​ ∗
60

175
CP W R

double TPS = (175/60) * COUNTS_PER_WHEEL_REV

Exchange the setPower(); functions for setVelocity(); . Add TPS as the parameter for

setVelocity(); .

waitForStart();

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

leftmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);

leftmotor.setVelocity(TPS);
rightmotor.setVelocity(TPS);

while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())){

 }

Try to build the code. Do you get errors?

With the current state of the code you are likely to get errors similar to the ones pictured below:

This is because the setVelocity(); function is a function of the DcMotorEx Interface. The

DcMotorEx Interface is an extension of the DcMotor Interface, that provides enhanced motor

functionality, such as access to closed loop control functions. To use setVelocity(); the motor

variables need to be changed to DcMotorEx . To do this both the private variable creation of the motors,

and the hardware mapping need to be changed to DcMotorEx .

public class HelloWorld_EncoderAuton extends LinearOpMode {
 private DcMotorEx leftmotor;
 private DcMotorEx rightmotor;

public void runOpMode() {
 leftmotor = hardwareMap.get(DcMotorEx.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotorEx.class, "rightmotor");

Since DcMotorEx is an extension of DcMotor , DcMotor specific functions can be used by

variables defined as DcMotorEx .

Once you have made these changes the basic, drive two feet code is done! The code below is the finalized
version of the code. In this the other hardware components and telemetry have been added.

@Autonomous

public class HelloWorld_EncoderAuton extends LinearOpMode {
 private DcMotorEx leftmotor;
 private DcMotorEx rightmotor;
 private DcMotor arm;
 private Servo claw;
 private DigitalChannel touch;
 private Gyroscope imu;

 static final double COUNTS_PER_MOTOR_REV = 28.0;
 static final double DRIVE_GEAR_REDUCTION = 30.24;
 static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * 3.14;

 static final double COUNTS_PER_WHEEL_REV = COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCT
 static final double COUNTS_PER_MM = COUNTS_PER_WHEEL_REV / WHEEL_CIRCUMFEREN

 @Override
 public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 leftmotor = hardwareMap.get(DcMotorEx.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotorEx.class, "rightmotor");
 arm = hardwareMap.get(DcMotor.class, "arm");
 claw = hardwareMap.get(Servo.class, "claw");
 touch = hardwareMap.get(DigitalChannel.class, "touch");

 rightmotor.setDirection(DcMotor.Direction.REVERSE);

 leftmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);

 rightmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);

 int leftTarget = (int)(610 * COUNTS_PER_MM);
 int rightTarget = (int)(610 * COUNTS_PER_MM);
 double TPS = (175/ 60) * COUNTS_PER_WHEEL_REV;

 waitForStart();

 leftmotor.setTargetPosition(leftTarget);
 rightmotor.setTargetPosition(rightTarget);

 leftmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);
 rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);

 leftmotor.setVelocity(TPS);
 rightmotor.setVelocity(TPS);

 while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())) {
 telemetry.addData("left", leftmotor.getCurrentPosition());
 telemetry.addData("right", rightmotor.getCurrentPosition());
 telemetry.update();
 }
 }
}

Turning the Drivetrain Using RUN_TO_POSITION

In the section, the mechanism of setPower(); was discussed.

setPower(); dictates what direction and speed a motor moves in. On a drivetrain this dictates whether
the robot moves in forward, reverse, or turns.

Robot Navigation - OnBot Java

In RUN_TO_POSITION mode the encoder counts (or setTargetPosition();) are used instead of

setPower(); to dictate directionality of the motor. If a target position value is greater than the current
position of the encoder, the motor moves forward. If the target position value is less than the current position
of the encoder, the motor moves backwards

Since speed an directionality impacts how a robot turns, setTargetPostion(); and

setVelocity(); need to be edited to get the robot to turn. Consider the following code:

int leftTarget = (int)(610 * COUNTS_PER_MM);
int rightTarget = (int)(-610 * COUNTS_PER_MM);
double TPS = (100/ 60) * COUNTS_PER_WHEEL_REV;

waitForStart();

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

 leftmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);
rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);

leftmotor.setVelocity(TPS);
rightmotor.setVelocity(TPS);

The rightTarget has been changed to be a negative target position. Assuming that the encoder starts

at zero due to STOP_AND_RESET_ENCODER this causes the robot to turn to the right. Velocity remains the
same for both motors. If you try running this code, you may notice that the robot pivots along its center of
rotation. To get a wider turn changing the velocity so that the right motor is running at a lower velocity than
the left motor. Adjust the velocity and target position as needed to get the turn you need.

For more information on how direction and speed impact the movement of a robot please refer to

the explanation of setPower(); in the section.Robot Navigation

The following code walks through adding a turn to the program, after the robot moves forward for 2 feet. After

the robot reaches the 2 foot goal, there is a call to STOP_AND_RESET_ENCODERS this will reduce the
need to calculate what position to go to after a position has been reached.

@Autonomous

public class HelloWorld_EncoderAuton extends LinearOpMode {
 private DcMotorEx leftmotor;
 private DcMotorEx rightmotor;
 private DcMotor arm;
 private Servo claw;
 private DigitalChannel touch;
 private Gyroscope imu;

 static final double COUNTS_PER_MOTOR_REV = 28.0;
 static final double DRIVE_GEAR_REDUCTION = 30.24;
 static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * 3.14;

 static final double COUNTS_PER_WHEEL_REV = COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCT
 static final double COUNTS_PER_MM = COUNTS_PER_WHEEL_REV / WHEEL_CIRCUMFEREN

 @Override
 public void runOpMode() {
 imu = hardwareMap.get(Gyroscope.class, "imu");
 leftmotor = hardwareMap.get(DcMotorEx.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotorEx.class, "rightmotor");
 arm = hardwareMap.get(DcMotor.class, "arm");
 claw = hardwareMap.get(Servo.class, "claw");
 touch = hardwareMap.get(DigitalChannel.class, "touch");

 rightmotor.setDirection(DcMotor.Direction.REVERSE);

 leftmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
 rightmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);

 // TPS variable split to change velocity for each motor when necessary

 int leftTarget = (int)(610 * COUNTS_PER_MM);
 int rightTarget = (int)(610 * COUNTS_PER_MM);
 double LTPS = (175/ 60) * COUNTS_PER_WHEEL_REV;
 double RTPS = (175/ 60) * COUNTS_PER_WHEEL_REV;

 waitForStart();

 leftmotor.setTargetPosition(leftTarget);
 rightmotor.setTargetPosition(rightTarget);

 leftmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);
 rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);

 leftmotor.setVelocity(LTPS);
 rightmotor.setVelocity(RTPS);

 //wait for motor to reach position before moving on
 while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())) {
 telemetry.addData("left", leftmotor.getCurrentPosition());
 telemetry.addData("right", rightmotor.getCurrentPosition());
 telemetry.update();
 }
 // Reset encoders to zero
 leftmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
 rightmotor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);

 // changing variables to match new needs

 leftTarget = (int)(300 * COUNTS_PER_MM);
 rightTarget = (int)(-300 * COUNTS_PER_MM);
 LTPS = (100/ 60) * COUNTS_PER_WHEEL_REV;
 RTPS = (70/ 60) * COUNTS_PER_WHEEL_REV;

 leftmotor.setTargetPosition(leftTarget);
 rightmotor.setTargetPosition(rightTarget);

 leftmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);
 rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION);

 leftmotor.setVelocity(LTPS);
 rightmotor.setVelocity(RTPS);

 //wait for motor to reach position before moving on
 while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())) {
 telemetry.addData("left", leftmotor.getCurrentPosition());
 telemetry.addData("right", rightmotor.getCurrentPosition());
 telemetry.update();
 }
 }

}

Arm Control - Blocks

Introduction to Arm Control

Robot control comes in many different forms. Now that you have walked through programming a drivetrain,
we can apply those concepts to controlling other mechanisms. Since this guide utilizes the Class Bot the
focus will be on the basics of controlling it's main mechanism, a single jointed arm.

Controlling an arm requires a different thought process than the one you used to control the drivetrain. While
the drivetrain uses the rotation motion of the motors to drive along a linear distance, an arm rotates along a
central point, or joint. When working with an arm you will have to head caution to the physical limitations of
the robot this includes load bearing, range of motion, and other forces that may apply.

In this section you will learn how to use the gamepad Dpad controls and the installed Touch Sensor to
control the arm. However, the focus of this section is using code to limit the range of motion of the arm.

Sections Goals of Section

Basics of Programming an Arm
Introduction to coding an arm for teleoperated
control and working with a limit switch

Programming an Arm to a Position
Using motor encoders to move an arm to a specifi
position, such as from 45 degrees to 90 degrees.

Using Limits to Control Range of Motion
Working with the basics of arm control, motor
encoder, and limit switches to control the range of

motion for an arm.

Basics of Programming an Arm

Start by creating a basic op mode called HelloRobot_ArmControl .

For more information on how to create an op mode type check out the section. Test Bed - Blocks

Unlike the joystick, which sends values corresponding to the position of the joystick, the Dpad on the

gamepad inputs Boolean FALSE/TRUE . In order to tell the arm to move when Dpad Up or Dpad Down

are selected, an if/else if statement needs to be used. Select an block. Use the settings drop

down to change the block to an block. Do this by switching the out for an .

Add the block to the op mode while loop.

Add the and blocks to the condition

statements of the block.

One of the purposes of using the Dpad is to help delineate which direction the arm needs to move in. In this

case, should correspond with the arm moving upwards. Add a

 block to the do portion of the block below the

 block. Change the power from 1 to 0.2.

Add another block to the do portion of the block below the

 block. Change the power from 1 to -0.2.

Save the op mode and try running the code. Consider the following questions.

What happens if you press up on the Dpad ?

What happens if you press down on the Dpad ?

Right now the logic of the statement declares that when is true (has

been pressed) the motor will run in the forward (or in this case upwards) direction at 20% duty cycle. If

is true the motor will run in reverse at 20% duty cycle. If you ran the code at

this stage you may have noticed that even when you released the Dpad the motor continued to run in the

selected direction. The current statement tells the robot when the motor should move and in what

direction, but nothing tells the motor to stop, thus the arm is continuing to run without limits.

To fix this edit the block to be a instead. To do this select the settings icon on the block

and add an below the .

Add the the else portion of the block.

Try saving and running the op mode again. Pay attention to the speed of the arm going up versus
going down. Does the speed seem the same?

Working with an arm introduces different factors for consideration than what you have seen previously with
drivetrains. For instance, did you notice a difference in speeds when moving the arm up or down? Unlike the
drivetrain, where the effect of gravity impacts the motors consistently across either direction, gravity plays a
significant role in the speed of the arm motor.

Adding a Limit Switch

Another consideration to make is the physical limitations of your arm mechanism. Certain mechanisms may
have a physical limitation, that when exceeded runs the risk of damaging the mechanism or another
component of the robot. There are a few ways to limit the mechanism with sensors that will help reduce the
potential of a mechanism exceeding its physical limitations. In this section we will focus on using a limit
switch to limit the motion range of the arm.

This section assumes that you have a basic knowledge of limit switches form the
 and the article.

Test Bed
section Digital Sensors

As you may recall from the section limit switches use Boolean logic to dictate when a limit has
been met. Limit switches typically come in the form of digital sensors, like the Touch Sensor, as digital
sensors report a Boolean on/off to the system, much like a light switch.

Test Bed

If you are using a Class Bot your robot should have a Touch Sensor mounted to the front of your robot
chassis. You also have a installed. Together these items create a limit switch system.
By utilizing the limit switch system you can keep your Class Bot arm from exceeding the lower physical limit,
or what will be known as our starting position. Lets go ahead and start coding!

 Limit Switch Bumper

Before proceeding with code please make sure that your mechanism is interfacing with, and
pressing the Touch Sensor. If you have the Class Bot this entails making sure your bumper is
actively pressing the Touch Sensor when the arm comes down.

Start by grabbing the statement made in the previous section, and dragging it to the side of

the blocks project.

https://docs.revrobotics.com/15mm/ftc-starter-kit-class-bot/skv3-arm-assemblies#limit-switch-bumper-assembly

Add a new block to the while loop. Add the block to the conditional portion of

the block.

Add the block set back to the code in the do port of the block.

If you recall from the initial Limit switch section, the touch sensor operates on a FALSE/TRUE binary. When

the touch sensors is not pressed the block reports true; when the touch sensor is

pressed the block reports false. At this point the logic of the code states that when

touch sensor is not pressed, the gamepad commands that were previously chosen operate normally. To
function as a limit switch the motor needs to stop when the touch sensor is pressed.

Try adding a block to the else portion of the block.

Save the op mode and run it.

What happens when the Touch Sensor is pressed?

One of the common features of a limit switch, like the Touch Sensor, is the ability to reset to its default state.
If you press the Touch Sensor with your finger, you may notice that as soon as you release the pressure you
are applying the Touch Sensor will return to its default "not pressed" state. However, you have to release the
pressure in order to accomplish this.

Make sure that the mechanism is actually interfacing with the Touch Sensor. For the Class Bot,
you may need to adjust the Touch Sensor so that the Limit Switch Bumper is interfacing with it
more consistently.

The code in the info block above dictates that when the Touch Sensor is pressed the arm motor is set to
zero. This would work in a mechanism where the Touch Sensor is allowed to return to its default state on its
own. However, once the arm presses the Touch Sensor, the weight of the mechanism will keep the Touch
Sensor from returning to its default state. The combination of the weight of the mechanism and the logic of
the info block code means that once the arm meets its limit it will not be able to move again.

To remedy this, an action to move the arm in the opposite direction of of the limit needs to be added to the

else statement. To do this lets use another block. Since the Touch Sensor is a lower limit for the arm,

the arm will need to move up (or the motor in the forward direction) to move away from the touch sensor.

Following the earlier convention for moving the arm, add the as the condition

in the . In the do portion of the block add the block. Change the duty

cycle from 100% to 20%. In the else portion add the block.

Add this block set to the else portion of the block set.

Programming an Arm to a Position

In the section the concept of moving the motor to a specific position based on encoder Encoder Navigation

ticks was introduced. The process highlighted in Encoder Navigation focused on how to convert from
encoder ticks to rotations to a linear distance. A similar procedure can be utilized to move the arm to a
particular position. However, unlike the drivetrain, the arm does not follow a linear path. Rather than convert
to a linear distance it makes more sense to convert the encoder ticks into an angle measured in degrees.

In the image below two potential positions are showcased for the ClassBot arm. One of the positions -
highlighted in blue below - is the position where the arm meets the limit of the touch sensor. Due to the limit,
this position will be our default or starting position. From the Class Bot build guide, it is known that the
Extrusion supporting the battery sits a 45 degree angle. Since the arm is roughly parallel to these extrusion
when it is in the starting position, we can estimate that the default angle of the arm is roughly 45 degrees.

≈45°

≈90°

The goal of this section is to determine the amount of encoder ticks it will take to move the arm from its
starting position to a position around 90 degrees. There are a few different ways this can be accomplished.
An estimation can be done by moving the arm to the desired position and recording the telemetry feedback
from the Driver Station. Another option is to do to the math calculations to find the amount of encoder ticks
occur per degree moved. Follow through this section to walk through both options and determine which is
the best for your team.

Estimating the Position of the Arm

To estimate the position of the arm using telemetry and testing, lets start with the initial code we created at
the start of the , section.Basics of Programming an Arm

For now you can move the limit switch related blocks to the side of your project.

Within the loop add a block. Add the to the number

portion of the block. Change the key string from the default "key" to "Arm

Test."

Save the op mode and run it. Use the gamepad commands to move the arm to the 90 degree position. Once
you have the arm properly positioned read the telemetry off the Driver Station to determine the encoder
count relative to the position of the arm.

Arm Tes t : 83.0

Arm Test : 83.0

Recall from the section that the encoder position is set to 0 each time
the Control Hub is turned on. This means that if your arm is in a position other than the starting
position when the Control Hub is turned on, that position becomes zero instead of the starting
position.

 Basic Encoder Concepts

The number given in the image above is not necessarily an accurate encoder count for the 90
degree position. To get the most accurate encoder reading for your robot make sure that your
starting position reads as 0 encoder counts. To further increase accuracy consider doing several
testing runs before deciding on the number of counts.

To add the RUN_TO_POSITION code the if/else statement must first be edited back into an

block, as shown in the code below.

Now recall that in order to execute RUN_TO_POSITION the following three blocks need to be added to

both sections of the block.

When DpadUp is pressed, the arm should move to the the 90 degree position. When DpadDown is
pressed the arm should move back to the starting position. To do this set the first

equal to the number of ticks it took your arm to get to 90 degrees, for this example we will use 83 ticks.

Since we want DpadDown to return the arm to the starting position, keeping the
 block set to 0 will allow us to accomplish this. Set both

 blocks equal to 0.5.

Recall that the target position dictates which direction the motor moves, taking over the

directionality control from the block, so both blocks can be set to a

positive value since they will control the speed.

If you try running this code you may notice that the arm oscillates around the 90 degree position. When this
behavior is present you should also notice the telemetry output for the encoder counts fluctuating.

RUN_TO_POSITION is a Closed Loop Control, which means that if the arm does not perfectly reach the
target position, the motor will continue to fluctuate until it does. When motors continue to oscillate and never
quite reach the target position this may be a sign that the factors determining tolerances and other aspects of
the closed loop are not tuned to this particular motor or mechanism. There are ways to tune the motor, but for
now we want to focus on working with the arm and expanding on how limits and positions work with regards
to the mechanism.

Calculating Target Position

In the initial introduction to run to position, you worked through the calculations needed to convert the ticks
per rotation of a motor into ticks per mm moved. Now we want to focus on how to convert ticks per rotation of
the motor to ticks per degree moved. From the previous section you should have a rough estimate of the
amount of ticks you need to get to the 90 degree position. The goal of this section is to work through how to
get a more exact position.

To start you will need some of the same variables we used in :Encoder Navigation

Ticks per Revolution

Recall, that ticks per revolution of the encoder shaft is different than the ticks per revolution of the shaft that is
controlling a mechanism. We saw this in the section when the ticks per revolution at the
motor was different from the ticks per revolution of the wheel. As motion is transmitted from a motor to a
mechanism, the resolution of the encoder ticks changes.

Encoder Navigation

For more information on the effect of motion transmission across a mechanism check out the
 section. Compound Gearing

The amount of ticks per revolution of the encoder shaft is dependent on the motor and encoder.
Manufacturers of motors with built-in encoders will have information on the amount of ticks per revolution.

Visit the manufacturers website for your motor or encoders for more information on encoder
counts. For HD Hex Motors or Core Hex Motors visit the documentation. Motor

In the there are two different Encoder Counts per Revolution numbers:Core Hex Motor specifications

At the motor - 4 counts/revolution

At the output - 288 counts/revolution

At the motor is the number of encoder counts on the shaft that encoder is on. This number is equivalent to
the 28 counts per revolution we used for the HD Hex Motor. The 288 counts "at the output" accounts for the
change in resolution after the motion is transmitted from the motor to the built in 72:1 gearbox. Lets use the
288 as ticks per revolution so that we do not have to account for the gearbox in our total gear reduction
variable.

https://docs.revrobotics.com/duo-build/actuators/gears/gears-advanced#compound-gearing
https://docs.revrobotics.com/duo-build/actuators/motors
https://docs.revrobotics.com/duo-build/actuators/motors/core-hex-motor#product-specs

Total Gear Reduction

Since we built the the gear reduction from the motor gearbox into the ticks per revolution the main focus of
this section is calculating the gear reduction of the arm joint. The motor shaft drives a 45 tooth gear that
transmits motion to a 125 tooth gear. The total gear ratio is 125T:45T. To calculate the gear reduction for this
gear train, we can simply divide 125 by 45.

​ =
45

125
2.777778

To summarize, for the Class Bot V2 the following information is true:

​

Ticks per revolution 288 ticks

Total gear reduction 2.777778

Now that we have this information lets create two constant variables:

COUNTS_PER_MOTOR_REV

GEAR_REDUCTION

The common naming convention for constant variables is known as CONSTANT_CASE, where
the variable name is in all caps and words are separated by and underscore.

Add the variables COUNTS_PER_MOTOR_REV and GEAR_REDUCTION variables to the initialization
section of the op mode.

Once the variables are created and added to the op mode, use the blocks to set the variables to the

respective values

Now that these two variables have been defined, we can use them to calculate two other variables: the
amount of encoder counts per rotation of the 125T driven gear and the number of counts per degree moved.

Calculating counts per revolution of the 125T gear (or COUNTS_PER_GEAR_REV)is the same formula used

in for our COUNTS_PER_WHEEL_REV variable. So to get this variable we can

multiple COUNTS_PER_MOTOR_REV by GEAR_REDUCTION .

 Encoder Navigation

To calculate the number of counts per degree or moved or COUNTS_PER_DEGREE divide the

COUNTS_PER_GEAR_REV variable by 360.

Add both these variables to the op mode in the initialization section of the op mode.

Finally we need to create a non-constant variable that will act as our position. Create a variable called arm
position.

To get to the 90 degree position, the arm needs to move roughly 45 degrees. Set arm position equal to

COUNTS_PER_DEGREE times 45.

Add this variable to the section of the statement, as this section dictates

the 90 degree position. Add the block to the block.

We could set equal to . However, it is

a good practice to create a variable in situations like this. If we want to add another position later,
we can easily edit the variable to fit our needs.

Using Limits to Control Range of Motion

In the previous sections you worked on some of the building blocks for restricting an arms range of motion.
From those sections you should have the foundation you need to perform basic arm control. However, there

are some other creative ways you can use encoder positions and limits to expand the control you have over
This section will cover two additional types of control. The first type of control we will explore is the idea of
soft limits. In the section we discuss the concept of physical limits of a mechanism
however, there may be times you need to limit the range of motion of an arm without installing a physical
limit. To do this a position based code can be used to create a range for the arm.

 Adding a Limit Switch

Once you have a basic idea of how to create soft limits, we will explore how to use a limit switch (like a
touch sensor) to reset the range of motion. This type of control reduces the risk of getting stuck outside of
your intended range of motion, which can affect the expected behavior of your robot.

To set the soft limits we will use some of the basic logic we established in previous sections, with some

edited changes. Start with a Basic Op Mode and add the constant variables from the
 section to the op mode.

Calculating Target
Position

Next we need to create our upper and lower limits. Create two new variables one called minPosition

and one called maxPosition . Add both of these to the initialization section of the op mode.

For now we want the minPosition set as our starting position and the maxPosition set to our 90

degree position. Set minPosition equal to and set maxPosition equal to

 .

An if/else if statement needs to be added to control the arm, for this we can use the same basic logic
we use in the section.Basics of Programming an Arm

To set the limit we need to edit our if/else if statement so that the limits are built in. If DpadUp is

selected and the position of the arm is less than the maxPosition then the arm will move to the

maxPosition . If DpadDown is selected and the position of the is greater that the minPosition then

the arm will move towards the minPosition .

The current code configuration will stop the motor at any point that the conditions to power the
motor are not met. Depending to factors like the weight of the mechanism and any load that it is

bearing, when the motor stops the arm may drop below the maxPosition . Take time to test
out the code and confirm that it behaves in the way you expect it to.

Overriding Limits

One of the benefits of having a soft limit is being able to exceed that limit. Since encoders zero tick position
is determined by the position of the arm when the Control Hub powers on; if attention is not payed to what
position the arm is on power up the range of motion of the arm is affected. For instance, if we have to reset
the Control Hub while the arm is in the 90 degree position, the 90 degree position is equal to 0 encoder
ticks. One way around this is to create an override for the range of motion.

There are a few different ways an override of sorts can be created, in our case we are going to use the a
button and touch sensor to help reset our range.

Start by editing the to add another condition. Use the block as the

condition. Add a block to the do portion of the block.

Now that we have this change in place, when the a button is pressed the arm will move toward the starting

position. When the arm reaches and presses the touch sensor we want to STOP_AND_RESET_ENCODER .

We can create an statement that focuses on performing this stop and reset when the touch sensor is

pressed. Since the touch sensor reports true when its not pressed and false when it is, we will need to
use the block.

The not operator can be used in conditional binary statements when you need inverse

whether something is true of false . For instance, an if statement activates when

something is true, but when the Touch Sensor reports true it is not pressed. In our case we
want this if statement to activate when the touch sensor is pressed thus we need to use the not
operator.

So, if the touch sensor returns false (or is pressed) the motor run mode

STOP_AND_RESET_ENCODER will be activated causing the motor encoder to reset to 0 ticks.

Now that this code is done, try testing it!

Arm Control - OnBot Java

Introduction to Arm Control

Robot control comes in many different forms. Now that you have walked through programming a drivetrain,
we can apply those concepts to controlling other mechanisms. Since this guide utilizes the Class Bot the
focus will be on the basics of controlling it's main mechanism, a single jointed arm.

Controlling an arm requires a different thought process than the one you used to control the drivetrain. While
the drivetrain uses the rotation motion of the motors to drive along a linear distance, an arm rotates along a
central point, or joint. When working with an arm you will have to head caution to the physical limitations of
the robot this includes load bearing, range of motion, and other forces that may apply.

In this section you will learn how to use the gamepad Dpad controls and the installed Touch Sensor to
control the arm. However, the focus of this section is using code to limit the range of motion of the arm.

Sections Goals of Section

Basics of Programming an Arm
Introduction to coding an arm for teleoperated
control and working with a limit switch

Programming an Arm to a Position
Using motor encoders to move an arm to a specifi
position, such as from 45 degrees to 90 degrees.

Using Limits to Control Range of Motion
Working with the basics of arm control, motor
encoder, and limit switches to control the range of
motion for an arm.

Basics of Programming an Arm

Start by creating a basic op mode called HelloRobot_ArmControl .

For more information on how to create an op mode check out the section. Test Bed - Onbot Java

Unlike the joystick, which sends values corresponding to the position of the joystick, the Dpad on the

gamepad inputs Boolean FALSE/TRUE . In order to dictate how the arm moves when you press DpadUp

or DpadDown ; an if/else if statement needs to be used. Create an if/else if statement like the
one below

while (opModeIsActive()) {
 if(gamepad1.dpad_up){

 }
 else if (gamepad1.dpad_down){

 }
 }

Now that the basic structure is in place, we can add the necessary blocks to dictate the direction of the arm.

The best practice is to have the arm move up when DpadUp is selected and down with DpadDown is

selected. To do this lets add arm.SetPower(); to each of the actionable parts of the if/else
if statement.

Recall that the value assigned to setPower dictates the of the motor.
Between the motor and the gearing on the class bot the positive value will move the arm the arm
upwards and a negative value will move the arm downwards.

direction and speed

If you are unsure which direction your motor will move create the following code and test to
ensure that your motor is behaving as expected.

if(gamepad1.dpad_up){
 arm.setPower(0.2);
 }
else if (gamepad1.dpad_down){
 arm.setPower(-0.2);
 }

Starting with a lower duty cycle percentage such as the 0.2 exhibited in the code above, will
allow for easier testing when making decisions for the arm. We will change to a higher duty cycle
later on in this guide.

Save the op mode and try running the code. Consider the following questions.

What happens if you press up on the Dpad ?

What happens if you press down on the Dpad ?

Right now the logic of the if/else if statement declares that when gamepad1.dpad_up is true (has
been pressed) the motor will run in the forward (or in this case upwards) direction at 20% duty cycle. If

gamepad1.dpad_down is true the motor will run in reverse at 20% duty cycle. If you ran the code at this

stage you may have noticed that even when you released the Dpad the motor continued to run in the

selected direction. The current if/else if statement tells the robot when the motor should move and in
h t di ti b t thi t ll th t t t th th ti t ith t li it

To fix this edit the if/else if statement to include and action to perform if neither gamepad conditions
are true. Since we want the arm to stop moving if neither gamepad conditions are met lets use

arm.setPower(0); to stop the motor .

if(gamepad1.dpad_up){
 arm.setPower(0.2);
 }
else if (gamepad1.dpad_down){
 arm.setPower(-0.2);
 }
else {
 arm.setPower(0);
 }

Try saving and running the op mode again. Pay attention to the speed of the arm going up versus
going down. Does the speed seem the same?

Working with an arm introduces different factors for consideration than what you have seen previously with
drivetrains. For instance, did you notice a difference in speeds when moving the arm up or down? Unlike the
drivetrain, where the effect of gravity impacts the motors consistently across either direction, gravity plays a
significant role in the speed of the arm motor.

Adding a Limit Switch

Another consideration to make is the physical limitations of your arm mechanism. Certain mechanisms may
have a physical limitation, that when exceeded runs the risk of damaging the mechanism or another
component of the robot. There are a few ways to limit the mechanism with sensors that will help reduce the
potential of a mechanism exceeding its physical limitations. In this section we will focus on using a limit
switch to limit the motion range of the arm.

This section assumes that you have a basic knowledge of limit switches form the
section and the article.

 Test Bed
Digital Sensors

As you may recall from the Test Bed section limit switches use Boolean logic to dictate when a limit has
been met. Limit switches typically come in the form of digital sensors, like the Touch Sensor, as digital
sensors report a Boolean on/off to the system, much like a light switch.

If you are using a Class Bot your robot should have a Touch Sensor mounted to the front of your robot
chassis. You also have a installed. Together these items create a limit switch system.
By utilizing the limit switch system you can keep your Class Bot arm from exceeding the lower physical limit,
or what will be known as our starting position. Lets go ahead and start coding!

 Limit Switch Bumper

Before proceeding with code please make sure that your mechanism is interfacing with, and

https://docs.revrobotics.com/15mm/ftc-starter-kit-class-bot/skv3-arm-assemblies#limit-switch-bumper-assembly

pressing the Touch Sensor. If you have the Class Bot this entails making sure your bumper is
actively pressing the Touch Sensor when the arm comes down.

In the section, you learned how to create a basic limit switch program, similar to the
one below.

Test Bed - Onbot Java

Limit Switch if/else

 if (touch.getState()){
 //Touch Sensor is not pressed
 arm.setPower(0.2);

} else {
 //Touch Sensor is pressed
 arm.setPower(0);
 }

If you recall from the initial Limit Switch section, the Touch Sensor operates on a FALSE/TRUE binary.

When the touch sensors is not pressed touch.getState() reports true ; when the touch sensor is

pressed touch.getState() reports false . The logic of the code states that when touch sensor is not
pressed, the motor runs at 20% duty cycle.

Rather than have the motor run at 20% of duty cycle when the Touch Sensor isn't pressed and stop when the

sensor is pressed, we want to control the arm using the gamepad still. To do this we can nest the Gamepad
if/else if statement within the Limit Switch if/else statement.

For this next portion we will be utilizing the if/else if statement create in the Basics of
Programming and Arm. From here on out this basic code logic will be refereed to as the

Gamepad if/else if . The limit switch code will be know as the Limit Switch
if/else . Both pieces of code will be referenced again.

Gamepad if/else if

if(gamepad1.dpad_up){
 arm.setPower(0.2);
 }
else if (gamepad1.dpad_down){
 arm.setPower(-0.2);

 }
else {
 arm.setPower(0);
 }

if(touch.getState()){
 if(gamepad1.dpad_up){
 arm.setPower(0.2);
 }
 else if (gamepad1.dpad_down){

 arm.setPower(-0.2);
 }
 else {
 arm.setPower(0);
 }
 }
 else {
 arm.setPower(0);
 }

Save the op mode and run it.

What happens when the Touch Sensor is pressed?

One of the common features of a limit switch, like the touch sensor, is the ability to reset to its default state. If
you press the Touch Sensor with your finger, you may notice that as soon as you release the pressure you
are applying the Touch Sensor will return to its default "not pressed" state. However, you have to release the
pressure in order to accomplish this.

Make sure that the mechanism is actually interfacing with the Touch Sensor. For the Class Bot,
you may need to adjust the Touch Sensor so that the Limit Switch Bumper is interfacing with it
more consistently.

The code in the info block above dictates that when the Touch Sensor is pressed the arm motor is set to
zero. This would work in a mechanism where the Touch Sensor is allowed to return to its default state on its
own. However, once the arm presses the Touch Sensor, the weight of the mechanism will keep the Touch
Sensor from returning to its default state. The combination of the weight of the mechanism and the logic of
the info block code means that once the arm meets its limit it will not be able to move again.

To remedy this, an action to move the arm in the opposite direction of of the limit needs to be added to the

else statement. Since the Touch Sensor is a lower limit for the arm, the arm will need to move up (or the

motor in the forward direction) to move away from the touch sensor. To do this we can create an if/else

statement similar to our gamepad Gamepad if/else if statement. Instead of having the normal

gamepad operations, when the Touch Sensor and DpadUp are pressed the arm moves away from the
Touch Sensor. Once the Touch Sensor no longer reports false the normal gamepad operations return and
the arm can move in either direction again.

if(touch.getState()){
 if(gamepad1.dpad_up){
 arm.setPower(0.2);
 }
 else if (gamepad1.dpad_down){
 arm.setPower(-0.2);
 }
 else {
 arm.setPower(0);

 } }
 else {
 if(gamepad1.dpad_up){
 arm.setPower(0.2);
 }
 else{
 arm.setPower(0);
 }

Programming an Arm to a Position

In the section the concept of moving the motor to a specific position based on encoder
ticks was introduced. The process highlighted in Encoder Navigation focused on how to convert from
encoder ticks to rotations to a linear distance. A similar procedure can be utilized to move the arm to a
particular position. However, unlike the drivetrain, the arm does not follow a linear path. Rather than convert
to a linear distance it makes more sense to convert the encoder ticks into an angle measured in degrees.

Encoder Navigation

In the image below two potential positions are showcased for the ClassBot arm. One of the positions -
highlighted in blue below - is the position where the arm meets the limit of the touch sensor. Due to the limit,
this position will be our default or starting position. From the Class Bot build guide, it is known that the
Extrusion supporting the battery sits a 45 degree angle. Since the arm is roughly parallel to these extrusion
when it is in the starting position, we can estimate that the default angle of the arm is roughly 45 degrees.

≈45°

≈90°

The goal of this section is to determine the amount of encoder ticks it will take to move the arm from its

starting position to a position around 90 degrees. There are a few different ways this can be accomplished.
An estimation can be done by moving the arm to the desired position and recording the telemetry feedback
from the Driver Station. Another option is to do to the math calculations to find the amount of encoder ticks
occur per degree moved. Follow through this section to walk through both options and determine which is
the best for your team

Estimating the Position of the Arm

To estimate the position of the arm using telemetry and testing, lets start with the Gamepad if/else
if code.

Gamepad if/else if

if(gamepad1.dpad_up){
 arm.setPower(0.2);
 }
else if (gamepad1.dpad_down){
 arm.setPower(-0.2);
 }
else {
 arm.setPower(0);
 }

For now you can comment out the limit switch related code.

Within the while loop add the lines telemetry.addData("Arm Test",
arm.getCurrentPosition()); and telemetry.update();

while(opModeIsActive){
 if(gamepad1.dpad_up){
 arm.setPower(0.2);
 }
 else if (gamepad1.dpad_down){
 arm.setPower(-0.2);
 }
 else {
 arm.setPower(0);

 }
 telemetry.addData("Arm Test", arm.getCurrentPosition());
 telemetry.update();

 }

Save the op mode and run it. Use the gamepad commands to move the arm to the 90 degree position. Once
you have the arm properly positioned read the telemetry off the Driver Station to determine the encoder
count relative to the position of the arm.

Arm Tes t : 83.0

Arm Test : 83.0

Recall from the section that the encoder position is set to 0 each time
the Control Hub is turned on. This means that if your arm is in a position other than the starting
position when the Control Hub is turned on, that position becomes zero instead of the starting
position.

 Basic Encoder Concepts

The number given in the image above is not necessarily an accurate encoder count for the 90
degree position. To get the most accurate encoder reading for your robot make sure that your
starting position reads as 0 encoder counts. To further increase accuracy consider doing several
testing runs before deciding on the number of counts.

Recall that in order to execute RUN_TO_POSITION the following three lines of cod need to be added to

both sections of the Gamepad if/else if block.

arm.setTargetPosition(0);
arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
arm.setPower(0);

When DpadUp is pressed, the arm should move to the the 90 degree position. When DpadDown is
pressed the arm should move back to the starting position. To do this set the

first arm.setTargetPosition(0); equal to the number of ticks it took your arm to get to 90 degrees,
for this example we will use 83 ticks.

Since we want DpadDown to return the arm to the starting position, keeping the

arm.setTargetPosition(0); set to 0 will allow us to accomplish this. Set both

arm.setPower(0); equal to 0.5.

Target Position if/else if

if(gamepad1.dpad_up){

 arm.setTargetPosition(83); arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
 arm.setPower(0.5);
 }
else if (gamepad1.dpad_down){
 arm.setTargetPosition(0);
 arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
 arm.setPower(0.5);
 }

Note: the code above was given a file name Target Position if/else if this code will
be referenced again.

Recall that the target position dictates which direction the motor moves, taking over the

directionality control from arm.setPower(); so both blocks can be set to a positive value
since they will control the speed.

If you try running this code you may notice that the arm oscillates in the 90 degree position. When this
behavior is present you should also notice the telemetry output for the encoder counts fluctuating.

RUN_TO_POSITION is a Closed Loop Control, which means that if the arm does not perfectly reach the
target position, the motor will continue to fluctuate until it does. When motors continue to oscillate and never
quite reach the target position this may be a sign that the factors determining tolerances and other aspects of
the closed loop are not tuned to this particular motor or mechanism. There are ways to tune the motor, but for
now we want to focus on working with the arm and expanding on how limits and positions work with regards
to the mechanism.

Calculating Target Position

In the initial introduction to run to position, you worked through the calculations needed to convert the ticks
per rotation of a motor into ticks per mm moved. Now we want to focus on how to convert ticks per rotation of
the motor to ticks per degree moved. From the previous section you should have a rough estimate of the
amount of ticks you need to get to the 90 degree position. The goal of this section is to work through how to
get a more exact position.

To start you will need some of the same variables we used in :Encoder Navigation

Ticks per Revolution

Recall, that ticks per revolution of the encoder shaft is different than the ticks per revolution of the shaft that is
controlling a mechanism. We saw this in the section when the ticks per revolution at the
motor was different from the ticks per revolution of the wheel. As motion is transmitted from a motor to a
mechanism, the resolution of the encoder ticks changes.

Encoder Navigation

For more information on the effect of motion transmission across a mechanism check out the
 section.Compound Gearing

https://docs.revrobotics.com/duo-build/actuators/gears/gears-advanced#compound-gearing

The amount of ticks per revolution of the encoder shaft is dependent on the motor and encoder.
Manufacturers of motors with built-in encoders will have information on the amount of ticks per revolution.

Visit the manufacturers website for your motor or encoders for more information on encoder
counts. For HD Hex Motors or Core Hex Motors visit the documentation. Motor

In the there are two different Encoder Counts per Revolution numbers:Core Hex Motor specifications

At the motor - 4 counts/revolution

At the output - 288 counts/revolution

At the motor is the number of encoder counts on the shaft that encoder is on. This number is equivalent to
the 28 counts per revolution we used for the HD Hex Motor. The 288 counts "at the output" accounts for the
change in resolution after the motion is transmitted from the motor to the built in 72:1 gearbox. Lets use the
288 as ticks per revolution so that we do not have to account for the gearbox in our total gear reduction
variable.

Total Gear Reduction

Since we built the the gear reduction from the motor gearbox into the ticks per revolution the main focus of
this section is calculating the gear reduction of the arm joint. The motor shaft drives a 45 tooth gear that
transmits motion to a 125 tooth gear. The total gear ratio is 125T:45T. To calculate the gear reduction for this
gear train, we can simply divide 125 by 45.

​ =
45

125
2.777778

To summarize, for the Class Bot V2 the following information is true:

​

Ticks per revolution 288 ticks

Total gear reduction 2.777778

Now that we have this information lets create two constant variables:

COUNTS_PER_MOTOR_REV

GEAR_REDUCTION

The common naming convention for constant variables is known as CONSTANT_CASE, where
the variable name is in all caps and words are separated by and underscore.

https://docs.revrobotics.com/duo-build/actuators/motors
https://docs.revrobotics.com/duo-build/actuators/motors/core-hex-motor#product-specs

Add the COUNTS_PER_MOTOR_REV and GEAR_REDUCTION variables to the op mode beneath where the
hardware variables are created.

public class HelloRobot_ArmControl extends LinearOpMode {
 private DcMotor arm;

 static final double COUNTS_PER_MOTOR_REV = 288;
 static final double GEAR_REDUCTION = 2.7778;

Now that these two variables have been defined, we can use them to calculate two other variables: the
amount of encoder counts per rotation of the 125T driven gear and the number of counts per degree moved.

Calculating counts per revolution of the 125T gear (or COUNTS_PER_GEAR_REV)is the same formula used

in for our COUNTS_PER_WHEEL_REV variable. So to get this variable we can

multiple COUNTS_PER_MOTOR_REV by GEAR_REDUCTION .

Encoder Navigation

static final double COUNTS_PER_GEAR_REV = COUNTS_PER_MOTOR_REV * GEAR_REDUCTION;

To calculate the number of counts per degree or moved or COUNTS_PER_DEGREE divide the

COUNTS_PER_GEAR_REV variable by 360.

static final double COUNTS_PER_DEGREE = COUNTS_PER_GEAR_REV/360;

Add both these variables to the op mode.

public class HelloRobot_ArmControl extends LinearOpMode {
 private DcMotor arm;

 static final double COUNTS_PER_MOTOR_REV = 288;
 static final double GEAR_REDUCTION = 2.7778;
 static final double COUNTS_PER_GEAR_REV = COUNTS_PER_MOTOR_REV * GEAR_REDUCTION;
 static final double COUNTS_PER_DEGREE = COUNTS_PER_GEAR_REV/360;

Finally we need to create a non-constant variable that will act as our position. Create a variable called

armPosition above the waitForStart(); command.

public void runOpMode() {
 arm = hardwareMap.get(DcMotor.class, "arm");

 int armPosition;

 waitForStart();

Add this variable to the if(gaempad1.dpad_up) section of the Target Position if/else
if statement, as this section dictates the 90 degree position. To get to the 90 degree position, the arm needs

t hl 45 d S t iti l t COUNTS PER DEGREE ti 45

Recall that setTargetPosition() requires an integer to be its parameter. When defining

armPosition remember to add the line (int) in front of the double variable. However, you

need to be cautious of potential rounding errors. Since COUNTS_PER_MM is part of an equation it
is recommended that you convert to an integer after the result of the equation is found.

armPosition = (int)(COUNTS_PER_DEGREE * 45);

while (opModeIsActive()) {

 if(gamepad1.dpad_up){
 armPosition = (int)(COUNTS_PER_DEGREE * 45);
 arm.setTargetPosition(83);
 arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
 arm.setPower(0.4);
 }

Set target position to armPostion .

if(gamepad1.dpad_up){
 armPosition = (int)(COUNTS_PER_DEGREE * 45);
 arm.setTargetPosition(armPosition);
 arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
 arm.setPower(0.4);
 }
else if (gamepad1.dpad_down){
 arm.setTargetPosition(0);
 arm.setMode(DcMotor.RunMode.RUN_TO_POSITION);
 arm.setPower(0.4);
 }

We could change what armPosition is equal to in the gamepad1.dpad_down portion of

the if/else if statement such as:

else if (gamepad1.dpad_down){

 armPosition = (int)(COUNTS_PER_DEGREE * 0);
 arm.setTargetPosition(armPosition);
 arm.setMode(DcMotorEx.RunMode.RUN_TO_POSITION);
 arm.setPower(0.4);
 }

In this case we would consistently redefine armPosition to match the needs of whatever
positions we want to create. Since our only two positions at the moment are our starting position
and our 90 degree position it isn't necessary However, it is a good practice to create a variable in
situations like this. If we want to add another position later, we can easily edit the variable to fit
our needs.

Using Limits to Control Range of Motion

In the previous sections you worked on some of the building blocks for restricting an arms range of motion.
From those sections you should have the foundation you need to perform basic arm control. However, there
are some other creative ways you can use encoder positions and limits to expand the control you have over
your arm.

This section will cover two additional types of control. The first type of control we will explore is the idea of
soft limits. In the section we discuss the concept of physical limits of a mechanism
however, there may be times you need to limit the range of motion of an arm without installing a physical
limit. To do this position based code can be used to create a range for the arm.

Adding a Limit Switch

Once you have a basic idea of how to create soft limits, we will explore how to use a limit switch (like a
touch sensor) to reset the range of motion. This type of control reduces the risk of getting stuck outside of
your intended range of motion, which can affect the expected behavior of your robot.

To set the soft limits we will use some of the basic logic we established in previous sections, with some

edited changes. Start with a Basic Op Mode and add the constant variables from the
 section to the op mode.

Calculating Target
Position

@TeleOp

public class Basic extends LinearOpMode {
 private DcMotor arm;

 static final double COUNTS_PER_MOTOR_REV = 288;
 static final double GEAR_REDUCTION = 2.7778;
 static final double COUNTS_PER_GEAR_REV = COUNTS_PER_MOTOR_REV * GEAR_REDUCTION;
 static final double COUNTS_PER_DEGREE = COUNTS_PER_GEAR_REV/360;

 @Override
 public void runOpMode() {
 arm = hardwareMap.get(DcMotor.class, "arm");

 waitForStart();

 while (opModeIsActive()) {
 telemetry.addData("Status", "Running");
 telemetry.update();

 }
 }
}

Next we need to create our upper and lower limits. Create two new integer variables one called

minPosition and one called maxPosition . Add both of these to the in the initialization section of the

op mode above the waitForStart() ; command.

public void runOpMode() {
 arm = hardwareMap.get(DcMotor.class, "arm");

 int minPostion;
 int maxPosition;
 waitForStart();

For now we want the minPosition set as our starting position and the maxPosition set to our 90

degree position. Set minPosition equal to 0 and set maxPosition equal to COUNTS_PER_DEGREE
times 45 .

Remember you need to make a data type conversion!

int minPostion = 0;
int maxPosition = (int)(COUNTS_PER_DEGREE *45);

An if/else if statement needs to be added to control the arm, for this we can use the same basic logic
we use in the . Basics of Programming and Arm

while(opModeIsActive()){
 if(gamepad1.dpad_up){
 arm.setPower(0.5);
 }
 else if (gamepad1.dpad_down){
 arm.setPower(-0.5);
 }
 else {
 arm.setPower(0);
 }
 }

To set the limit we need to edit our if/else if statement so that the limits are built in. If DpadUp is

selected and the position of the arm is less than the maxPosition then the arm will move to the

maxPosition . If DpadDown is selected and the position of the is greater that the minPosition then

the arm will move towards the minPosition .

while (opModeIsActive()) {
 if (gamepad1.dpad_up && arm.getCurrentPosition() < maxPosition) {
 arm.setPower(0.5);
 }
 else if (gamepad1.dpad_down && arm.getCurrentPosition() > minPosition) {
 arm.setPower(-0.5);
 }

 else {
 arm.setPower(0);
 }
 }

The current code configuration will stop the motor at any point that the conditions to power the
motor are not met. Depending to factors like the weight of the mechanism and any load that it is

bearing, when the motor stops the arm may drop below the maxPosition . Take time to test
out the code and confirm that it behaves in the way you expect it to.

Overriding Limits

One of the benefits of having a soft limit is being able to exceed that limit. Since encoders zero tick position
is determined by the position of the arm when the Control Hub powers on; if attention is not payed to what
position the arm is on power up the range of motion of the arm is affected. For instance, if we have to reset
the Control Hub while the arm is in the 90 degree position, the 90 degree position is equal to 0 encoder
ticks. One way around this is to create an override for the range of motion.

There are a few different ways an override of sorts can be created, in our case we are going to use the a
button and touch sensor to help reset our range.

Start by editing the if/else if statement to add another else if condition. Use the line

gamepad1.a as the condition. Add a the line arm.setPower(-0.5); as the action item.

while (opModeIsActive()) {
 if (gamepad1.dpad_up && arm.getCurrentPosition() < maxPosition) {
 arm.setPower(0.5);
 }
 else if (gamepad1.dpad_down && arm.getCurrentPosition() > minPosition) {
 arm.setPower(-0.5);
 }
 else if(gamepad1.a){
 arm.setPower(-0.5);
 else {
 arm.setPower(0);
 }
 }

Now that we have this change in place, when the a button is pressed the arm will move toward the starting

position. When the arm reaches and presses the touch sensor we want to STOP_AND_RESET_ENCODER .

We can create another if statement that focuses on performing this stop and reset when the Touch Sensor

is pressed. Since the Touch Sensor reports true when its not pressed and false when it is, we will

need to use the logical not operator ! .

The not operator ! can be used in conditional binary statements when you need inverse

whether something is true of false . For instance, an if statement activates when

something is true, but when touch.getState(); reports true it is not pressed. In our
case we want this if statement to activate when the Touch Sensor is pressed thus we need to use
the not operator.

if (!touch.getState()) {
 arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
 }

So, if the Touch Sensor returns false (or is pressed) the motor run mode

STOP_AND_RESET_ENCODER will be activated causing the motor encoder to reset to 0 ticks.

Now that this code is done, try testing it!

@TeleOp

public class HelloRobot_ArmControl extends LinearOpMode {
 private DcMotor arm;
 private Servo claw;
 private Gyroscope imu;
 private DcMotor leftmotor;
 private DcMotor rightmotor;
 private DigitalChannel touch;

 static final double COUNTS_PER_MOTOR_REV = 288;
 static final double GEAR_REDUCTION = 2.7778;
 static final double COUNTS_PER_GEAR_REV = COUNTS_PER_MOTOR_REV * GEAR_REDUCTION;
 static final double COUNTS_PER_DEGREE = COUNTS_PER_GEAR_REV/360;

 @Override
 public void runOpMode() {
 arm = hardwareMap.get(DcMotor.class, "arm");
 claw = hardwareMap.get(Servo.class, "claw");
 imu = hardwareMap.get(Gyroscope.class, "imu");
 leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
 rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
 touch = hardwareMap.get(DigitalChannel.class, "touch");

 int minPostion = 0;
 int maxPosition = (int)(COUNTS_PER_DEGREE *45);

 waitForStart();

 // run until the end of the match (driver presses STOP)
 while (opModeIsActive()) {
 if (gamepad1.dpad_up && arm.getCurrentPosition() < maxPosition) {
 arm.setPower(0.5);
 }
 else if (gamepad1.dpad_down && arm.getCurrentPosition() > minPosition) {

 arm.setPower(-0.5);
 }
 else if (gamepad1.a) {
 arm.setPower(-0.5);
 }
 else {
 arm.setPower(0);
 }
 if (!touch.getState()) {
 arm.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
 }
 telemetry.addData("Arm Test", arm.getCurrentPosition());
 telemetry.update();
 }
 }
}

Using Encoders

Basic Encoder Concepts

Each motor designed by REV has an encoder built into it that keeps track of its rotation. To use it, you must
have a cable connecting the motor to the Control Hub () or Expansion Hub
(), next to the cable used to provide power to the motor.

4-pin JST PH REV-31-1595
REV-31-1153 2-pin JST VH

Encoder values are measured in “ticks.” Different motors have different numbers of ticks per rotation of the
output shaft based on the gear ratio of the motor. When the Control Hub is turned on, all of its encoder ports
are at 0 ticks. As a motor moves forward, its encoder value increases. As a motor moves backwards, its
encoder value decreases.

For more information see the .section on encoders

Choosing a Motor Mode

Your programs can always access the encoder values directly, but you can also direct the Control Hub to
use the encoder values to maintain a motor’s speed, or maintain a particular position. You do this by
changing the motor’s mode.

It is recommended to use the latest Control Hub and Expansion Hub firmware before using
RUN_USING_ENCODER mode or RUN_TO_POSITION mode.

STOP_AND_RESET_ENCODER Mode

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Place a motor in this mode when you want to set its encoder position back to 0. The motor will stop. To start
it again, you need to place the motor into one of the other three modes. It is recommended to place each
motor you will be using encoders with into this mode at the start of each program, so that you know what
position the motor is starting out in

RUN_WITHOUT_ENCODER Mode

Use this mode when you don’t want the Control Hub to attempt to use the encoders to maintain a constant
speed. You can still access the encoder values, but your actual motor speed will vary more based on
external factors such as battery life and friction. In this mode, you provide a power level in the -1 to 1 range,
where -1 is full speed backwards, 0 is stopped, and 1 is full speed forwards. Reducing the power reduces
both torque and speed.

This mode is a good choice for drivetrain motors driven by joysticks on the gamepad.

RUN_USING_ENCODER Mode

In this mode, the Control Hub will use the encoder to take an active role in managing the motor’s speed.
Rather than directly applying a percentage of the available power, RUN_USING_ENCODER mode targets
a specific velocity (speed). This allows the motor to account for friction, battery voltage, and other factors.

This mode is a good choice for operations, like a flywheel, that require a specific speed and can
use buttons on a gamepad for control.

RUN_TO_POSITION Mode

In this mode, the Control Hub will target a specific position, rather than a specific velocity. You still set a
velocity, but it is only used as the maximum velocity. The motor will continue to hold its position even after it
has reached its target.

This mode is a good choice for operations, like an arm, that require a specific position and can
use buttons on a gamepad for control.

Reading the Encoder Value

In Blocks, you access the current encoder value by using the DcMotor CurrentPosition block.

Blocks

In Java, you access the current encoder value by calling getCurrentPosition() on a
DcMotor or DcMotorEx object. This sample program prints the encoder value for a motor
configured with the name “Motor” to telemetry:

package ;org.firstinspires.ftc.teamcode
// import lines were omitted. OnBotJava will add them automatically.

@TeleOp
public class JavaEncoderTest extends LinearOpMode {
 DcMotorEx motor;

 @Override
 public void runOpMode() {
 motor = hardwareMap.get(DcMotorEx.class, "Motor");
 waitForStart();
 while (opModeIsActive()) {
 telemetry.addData("Encoder value", motor.getCurrentPosition());
 telemetry.update();
 }
 }
}

Java

Setting the Motor Mode

In Blocks, you set the motor’s mode with this block. You can select different modes from its
dropdown menu.

Blocks

Here is a snippet of code that demonstrates how to do the same thing in Java. You can skip the
first line if you already have retrieved the motor object from hardwareMap. Change
RUN_WITHOUT_ENCODER to the desired motor mode (STOP_AND_RESET_ENCODER,
RUN_WITHOUT_ENCODER, RUN_USING_ENCODER, or RUN_TO_POSITION).

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, "Motor");
motor.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);

Java

Using RUN_WITHOUT_ENCODER

The RUN_WITHOUT_ENCODER motor mode is very straightforward, you simply set a power in the range
of -1.0 to 1.0. However, if you try to set a velocity (which will be covered later on), the motor will automatically
be switched into RUN_USING_ENCODER mode.

The power level is set in Blocks mode using this block:

Blocks

The power level is set in Java by calling setPower() on a DcMotor or DcMotorEx object, as
is shown in this snippet. You can skip the first two lines if you already have retrieved the motor
object from hardwareMap and set the mode to RUN_WITHOUT_ENCODER.

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, "Motor");
motor.setMode(DcMotor.RunMode.RUN_WITHOUT_ENCODER);
// This will run the motor forward at half-power
double motorPower = 0.5;
motor.setPower(motorPower);

Java

Using RUN_USING_ENCODER

In RUN_USING_ENCODER mode, you should set a velocity (measured in ticks per second), rather than a
power level. You can still provide a power level in RUN_USING_ENCODER mode, but this is not
recommended, as it will limit your target speed significantly. Setting a velocity from
RUN_WITHOUT_ENCODER mode will automatically switch the motor to RUN_USING_ENCODER mode.
You should pick a velocity that the motor will be capable of reaching even with a full load and a low battery.

Providing a velocity is an extended motor feature, which means that the block for it is located
under DcMotor > Extended. You can see it here:

Blocks

The velocity is set in Java by calling setVelocity() on a DcMotorEx object, as is shown in
this snippet. You can skip the first two lines if you have already retrieved the motor object as a
DcMotorEx from hardwareMap and set the mode to RUN_USING_ENCODER.

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, "Motor");
motor.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
// This will turn the motor at 200 ticks per second
double motorVelocity = 200;
motor.setVelocity(motorVelocity);

Java

Using RUN_TO_POSITION

To use RUN_TO_POSITION mode, you need to do the following things in this order:

1. Set a target position (in ticks)

2. Switch to RUN_TO_POSITION mode

3. Set the maximum velocity

You should reset the encoders (switch to STOP_AND_RESET_ENCODER mode) during initialization
when you use RUN_TO_POSITION mode. If you are using it with a mechanism such as a lift, you have to
be careful to make sure that you always have the motor in the same physical location when you reset the
encoders, or else your target position won’t mean the same thing between runs.

The motor will continue to hold its position even after it has reached its target, unless you set the velocity or
power to zero, or switch to a different motor mode.

The following examples assume that the motor used is a Core Hex Motor. If it is a motor that has a more
precise encoder, such as an HD Hex Motor, higher velocity and target position values will be more
appropriate.

Here is a complete Blocks program that uses RUN_TO_POSITION.

Blocks

If you want to wait for the motor to reach its target position before continuing in your program, you
can use a while loop that checks if the motor is busy (not yet at its target):

package ;org.firstinspires.ftc.teamcode
// import lines were omitted. OnBotJava will add them automatically.

@TeleOp
public class JavaRunToPositionExample extends LinearOpMode {
 DcMotorEx motor;

 @Override
 public void runOpMode() {

Java

 motor = hardwareMap.get(DcMotorEx.class, "Motor");
 // Reset the encoder during initialization
 motor.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);

 waitForStart();

 // Set the motor's target position to 300 ticks
 motor.setTargetPosition(300);

 // Switch to RUN_TO_POSITION mode
 motor.setMode(DcMotor.RunMode.RUN_TO_POSITION);

 // Start the motor moving by setting the max velocity to 200 ticks per seco
 motor.setVelocity(200);

 // While the Op Mode is running, show the motor's status via telemetry
 while (opModeIsActive()) {
 telemetry.addData("velocity", motor.getVelocity());
 telemetry.addData("position", motor.getCurrentPosition());
 telemetry.addData("is at target", !motor.isBusy());
 telemetry.update();
 }
 }
}

If you want to wait for the motor to reach its target position before continuing in your program, you
can use a while loop that checks if the motor is busy (not yet at its target):

// Loop while the motor is moving to the target
while(motor.isBusy()) {
 // Let the drive team see that we're waiting on the motor
 telemetry.addData("Status", "Waiting for the motor to reach its target");
 telemetry.update();
}
// The motor has reached its target position, and the program will continue

Android Studio - Deploying Code Wirelessly

Android Debug Bridge (ADB) utility is the tool used by Android Studio to connect and control Android
devices, like the Control Hub. Android Studio, using ADB, allows users to build and install the Robot
Controller app onto their Control Hub.

Wi l ADB C l H bWi l ADB C l H b

https://www.youtube.com/watch?v=yFbMWZbwuhQ

Wireless ADB on Control HubWireless ADB on Control Hub

By default ADB supports using a hardwire connection via USB to deploy code to Android Devices. ADB
does support a wireless mode where the build and install process is sent over Wi-Fi. The Control Hub is
configured to support ADB wireless connections on port 5555. To deploy code over the Wi-Fi connection the
user will need to set up Wireless ADB.

Setting Up Wireless ADB using the REV Hardware Client

To set up wireless ADB using the REV Hardware Client you will need a laptop or PC with both
 and the installed.

Android
Studio REV Hardware Client

​

Power on the Control Hub, by plugging the 12V
Slim Battery () into the XT30
connector labeled “BATTERY” on the Control Hub.

REV-31-1302 ​ ​

The Control Hub is ready to connect with a PC
when the LED turns green.

Note: the light may blink blue every ~5 seconds to
indicate that the Control Hub is healthy depending
on Robot Controller version.

​ ​

https://www.youtube.com/watch?v=yFbMWZbwuhQ
https://www.revrobotics.com/rev-31-1302/

Connect to the Wi-Fi Network created by the
Control Hub

Note: Connect to the REV Hardware Client over

USB if the password needs resetting.

 ​

Open the REV Hardware Client and confirm the
Control Hub is connected over Wi-Fi

​

The Control Hub should be listed in the Android Studio devices dropdown

Sensors

Introduction to Sensors

Sensor Basics

When starting out many of the robot actions can be accomplished by turning on a motor for a specific
amount of time. Eventually, these time-based actions may not be accurate or repeatable enough. As battery
power drains while the robot is running and mechanisms wearing in through use can all affect time-based
actions. Fortunately, there is a way to give feedback to the robot about how it is operating by using sensors;
devices that are used to collect information about the robot and the environment around it.

Sensors provide information that allows you to program the robot to use this information to perform specific
actions. This allows the robot to perform at its best and in a repeatable manner. A few scenarios that can
benefit from a sensors information are listed below.

Scenarios where a sensor is needed:

The robot needs to autonomously move to a specific location and stop there.

The robot needs to move forward at a green signal and stop moving at a red signal.

The robot has an arm that needs to be prevented from rotating too far or it may damage other parts of the
robot.

The robot needs to stop 1 meter away from an opaque wall.

The robot needs to be able to tell how many game objects it is currently holding inside its hopper.

Different Sensor Types and Uses

Control Hub ports

In the REV Robotics Control System sensors are classified as basic, intermediate, or advanced. This
division among sensors is based on programming complexity. Basic sensors can typically be coded using
a if/else statement. Intermediate sensors, like the Color Sensor or Encoders, require a higher level
understanding of programming. Advanced sensors require an advanced knowledge of programming.
Visions sensors and using the Inertial Measurement Unit (IMU) are considered advanced.

Basic

In the REV Robotics Control System, both and sensors are considered basic sensors.Analog Digital

Digital sensors provide binary information: information that can take one of two possible values or states.
These states are represented in programming languages as: TRUE/FALSE or 1/0. Electrically, these states
are usually represented as two voltages: a High voltage and a Low voltage. For REV Hubs, High is 3.0V
and Low is 0V.

A touch sensor is a common digital sensor. It has two states: pressed and not-pressed.

Analog sensors provide a range of information with an almost infinite set of values, instead of just two.
These values are usually represented in programming languages as decimal numbers. Electrically, these
values are represented as voltage. REV Hubs can measure voltages on the analog ports between 0V and
5.0V.

Depending on the sensor, the reported voltage can represent anything that can't be represented by two
digital states. A potentiometer is a common analog sensor that reports the angle of an attached shaft as
voltages.

Some sensors in the REV Control System are capable of running up to 5V. To learn more about
sensor voltage visit the pages of the individual sensors!

The table below gives the basic usage scenarios for analog and digital sensors

Digital Analog

Gives feedback as either on or off. This type of
sensor is ideal for setting limits of a mechanism.

Gives feedback as a proportional voltage range.
This type of sensor is ideal for knowing exactly
where a mechanism is, like a dial on a radio.

Digital Sensors

Touch Sensor: A sensor with a button. The button press can be used to trigger actions like stopping
motors.

Magnetic Limit Switch: A sensor that detects magnetic fields. When there is sufficient field strength of
either magnetic pole detected the sensor is triggers and a limit of movement can be established.

Analog Sensors

Potentiometer: A sensor that senses the angular position of a shaft.

Intermediate

 sensors are considered intermediate because they give feedback through two-way communication with
a robot controller. These types of sensors allow for more complex data to communicate to the robot, such as
color values of an object.

I2C

Color Sensor: A sensor capable of sensing colors and proximity of objects.

2m Distance Sensor: A sensor typically used to detect the distance from the sensor to other opaque
objects.

All REV Robotics motors contain a built-in intermediate-level sensor called an Encoder. An , in the
context of robotics, is a type of digital sensor that converts rotary motion into digital signal. These type of
sensors require “decoding” to get this information into a usable form. The Control Hub and Expansion Hub
have built in decoding through the “Encoder Ports” under the motor ports.

Encoder

Advanced

Advanced sensors, in the REV Control System, are considered advanced as they rely on complex coding
and information from other sensors in order to work effectively. Both the IMU and vision sensors require
higher level code in order to decipher information being received from the sensor.

Vision IMU

Gives feedback as images to the robot controller.
These types of sensors require the use of image

 The IMU incorporates three sensors: a 3-axis
accelerometer, a 3-axis gyroscope, and a 3-axis

processing software, like VuForia, to use to their full geomagnetic sensor. This sensor can be used to

Digital

Digital Sensor Basics

The information from digital sensors comes in two states, also known as binary states. The binary state of a
digital sensor is either low or high. This is similar to a light switch being on or off.

Binary information, or states, can be thought of as an "either/or"; a light switch can either be in an
'on' state or an 'off' state. On/off, 0/1, low/high, and FALSE/TRUE are all different ways of
presenting binary information. In programming FALSE/TRUE is used most often.

The main difference between a light switch and a digital sensor is that a digital sensor has a default state.
The default state is typically its inactive states. Digital sensor datasheets typically will report the sensors
active behavior, either active-low or active-high. With an active-high behavior, when the digital sensor is
triggered (or activated) you can detect a change in code from a "logic" low state to a "logic" high state.

Logic Level represents the voltage difference between the signal and ground of the Control and
Expansion Hub's sensor ports. Both Hubs and REV Sensors operate on a 3.3V logic level. This
means the digital sensor needs an operating voltage of 3.3V for use with the Hub. If you are
looking to use a 5V digital sensor you will need a Logic Level Converter. See
for more information.

Using 5V Sensors

This change is from FALSE to TRUE and you can program your robot to act accordingly with this
information. Check the datasheet for the sensor you are using to determine its active behavior is and how
the behavior is reported in your code.

REV carries the following digital sensors:

Touch Sensor () REV-31-1425

Magnetic Limit Switch ()REV-31-1462

Wiring

https://www.revrobotics.com/rev-31-1425/
https://www.revrobotics.com/rev-31-1462/

Digital sensors connect to the Control Hub (), or Expansion Hub (), via a JST PH
4-Pin Sensor Cable and the Digital Ports, shown in the image above. The color-coding of the digital ports in
the image corresponds with each wire in the JST PH 4-Pin Sensor Cable. Following convention, the black
wire is ground and the red wire is power. The blue (n) and white (n+1) wires are the communication (signal)
channels along which the sensor sends feedback to the Hubs.

REV-31-1595 REV-31-1153

Each digital port on the Hub is capable of acting as two separate ports, thanks to the two channels of
communication. This is why the ports are marked as 0-1, 2-3, etc. The image above shows which channel of
communication corresponds with which port. The n+1 channel operates on odd-numbered ports 1-7 and the
n channel operates on the even number ports 0-6.

Two digital sensors may be hosted on the same physical port using the Sensor Splitter Cable. That being
said, it is important to check the Pinout Diagram included in the datasheets for each individual sensor, as
certain sensors, like the Touch sensor, use only one of the communication channels.

Configuration

Before a sensor can be programmed it must be added to the Robot Configuration. The configuration file
stores all configured devices in the Control Hub's "hardwareMap," which can be called to in the code to
establish the line of communication between devices.

The steps below show the basic configuration for digital devices. In the example, the Touch Sensor is
configured as "REV Touch Sensor" on port 1.

Step 1

While in the configuration select the Digital Devices option. This will open a screen that shows the eight
digital ports.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Step 2

In the drop-down menu for Port 1 select "REV Touch Sensor." After it is selected name the sensor. In this
example, the Touch Sensor is named "touch," but any naming convention can be used.

Step 3

When you have finished configuring the sensor hit Done. The app will return to the previous screen

For more information on configuring the Touch Sensor or Magnetic Limit Switch go to the sensor
datasheets.

Applications

How do digital sensors help a robot navigate the world around it? The REV Touch Sensor and REV

Magnetic Limit Switch are most commonly used as limit switches! Limit switches can help detect when a
mechanism, like an arm and/or a lift, has reached its physical limits. Installing a limit switch can help keep
robot mechanisms from overextending and breaking. They can also be used to zero out the position of motor
encoders to further reduce mechanical failure.

For more information on how to use the REV Digital Sensors as limit switches, sensor specifications, coding
examples, and more; click one of the links below to head to the sensor datasheets

​

​ ​Touch Sensor (REV-31-1425)

​ ​Magnetic Limit Switch (REV-31-1462)

​ ​Digital LED Indicator (REV-31-2010)

Analog

Analog Sensor Basics

Analog sensors can report an almost infinite number of states unlike digital sensors that report only two
states. As the state of the sensor changes, the voltage reporting back to the robot changes as well. Think of
a dimmer switch, the brightness of the lights in the room depends on where the slider or knob is positioned
along the scale of potential positions. As the knob is adjusted the voltage level adjusts proportionally and
the light continuously changes to the output from the knob.

Can you think of anything that acts like analog sensors around your household? Here are some
we thought of: scale, thermometer, volume knob

Unlike the binary (low/high) status of digital sensors, analog sensors consider all numbers within a specific,
given range. When using an analog sensor the actionable trigger will vary depending on the sensor.
Consider a potentiometer attached to an arm, the output voltage (signal) will correspond to an angle of the
arm. Knowing the angle of the arm then allows you to decide where to stop the arm along its travel path.

The Control Hub and Expansion Hub can read voltages ranging from 0V to 5V.

REV Robotics offers analog sensor, known as a Potentiometer (). The Potentiometer can be
used to sense or measure the angular position of a shaft.

REV-31-1155

Wiring

https://docs.revrobotics.com/touch-sensor/
https://docs.revrobotics.com/magnetic-limit-switch/
https://docs.revrobotics.com/rev-31-2010/
https://www.revrobotics.com/rev-31-1155/

Wiring

Analog sensors connect to the Control Hub (), or Expansion Hub (), via a JST
PH 4-Pin Sensor Cable and the Analog Ports, shown in the image above. The color-coding of the analog
ports in the image corresponds with each wire in the JST PH 4-Pin Sensor Cable. As a convention, the
black wire is ground and the red wire is power. The blue (n) wire and white (n+1) wire are the
communication (signal) channels along which the sensor sends feedback to the Hubs.

REV-31-1595 REV-31-1153

Each analog port on the Hub is capable of acting as two separate ports, thanks to the two channels of
communication. This is why the ports are marked as 0-1 and 2-3. The image above shows which channel of
communication corresponds with which port. The n+1 channel operates on odd-numbered ports 1-3 and the
n channel operates on the even number ports 0-2.

Two analog sensors may be hosted on the same physical port using the Sensor Splitter Cable (
). That being said, it is important to check the Pinout Diagram included in the datasheets for each

individual sensor, as certain sensors, like the REV Potentiometer, use only one of the communication
channels.

REV-31-
1386

Configuration

Before a sensor can be programmed it must be added to the Robot Configuration. The configuration file
stores all configured devices in the Control Hub's "hardwareMap," which can be called to in the code to
establish the line of communication between devices.

The steps below show the basic configuration for analog devices. In the example, the Potentiometer will be
configured as "Analog Input`" on port 0.

Step 1

While in the configuration select the Analog Input Devices option. This will open a screen that shows the
four analog ports.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1386/

Step 2

In the drop-down menu for Port 0 select "Analog Input." After it is selected name the sensor. In this example,
the Potentiometer is named "potentiometer," but any naming convention can be used.

Step 3

When you have finished configuring the sensor hit Done. The app will return to the previous screen.

Applications

How does the Potentiometer help a robot navigate the world around it? Potentiometers are most commonly
used to measure the angle of an arm type joint. The angle measurement can be used to set or find a specific
position along the arm joint.

For more information on the REV Potentiometer's sensor specifications, coding examples, and more; click
one of the links below to head to the sensor datasheets

​

​ ​Potentiometer (REV-31-1155)

I2C

I2C Sensor Basics

I2C is a common electronic communication standard that allows a host (the Hub) to communicate with
multiple devices on the same I2C bus. Each I2C port on a Hub is its own I2C bus. Every I2C device has a
unique address, a number that is normally fixed by the manufacturer. All of the devices on an individual I2C
bus must have a unique address so that the host can communicate with one device at a time. If two devices
have the same address, such as when using two of the same kind of sensors, they must be used on different
I2C buses otherwise the communication channels conflict.

While I2C is technically a digital communication protocol, it is more advanced than the simple
on/off style of basic digital sensors. I2C sensors require software drivers for the information from a
follower (sensor) to be interpreted by the leader (hub).

There are three I2C sensors within the REV system: the Inertial Measurement Unit (IMU), Color Sensor
(), and 2m Distance Sensor (). The IMU is built into the Control Hub (

) and Expansion Hub () and is connected to I2C bus 0.
REV-31-1557 REV-31-1505 REV-31-

1595 REV-31-1153

Logic Level represents the voltage difference between the signal and ground of the Control and
Expansion Hub's sensor ports. Both Hubs and REV Sensors operate on a 3.3V logic level. This
means the digital sensor needs an operating voltage of 3.3V for use with the Hub. If you are
looking to use a 5V I2C sensor you will need a Logic Level Converter. See for
more information.

Using 5V Sensors

https://docs.revrobotics.com/potentiometer/
https://www.revrobotics.com/rev-31-1557/
https://www.revrobotics.com/rev-31-1505/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Wiring

I2C sensors connect to the Control Hub (), or Expansion Hub (), via a JST PH 4-
Pin Sensor Cable and the I2C buses, shown in the image above. The color-coding of the I2C buses in the
image corresponds with each wire in the JST PH 4-Pin Sensor Cable. As a convention, the black wire is
ground and the red wire is power. The blue (SCLn) wire and white (SDAn) wire are the communication
signals for each I2C bus on the Hubs.

REV-31-1595 REV-31-1153

Sensor feedback to the Hub works differently for the I2C sensor than it does for Analog or Digital sensors.
With the Analog and Digital Sensors, only one communication channel needs to be used by an individual
sensor. In contrast, an I2C sensor sends different kinds of information over the SDA (white) and SCL (blue)
wires. Since the I2C is transferring more complex data to the Hub then Analog or Digital sensors, there has
to be a component of harmonization, or consistency, as the data moves from the sensor to the Hub. The SCL
(Serial Clock) channel provides consistency by acting as a clock line and time-stamping the data provided
by the SDA (Serial Data) channel.

While it is possible to host more than one I2C sensor on the same bus, there are a couple of factors to take
into account. The Hub keeps track of the information from different sensors by considering the sensor's
address in relation to the data being sent. When two sensors have the same address, like the REV Color
Sensor V3 and the 2m Distance Sensor, they cannot be hosted on the same bus. Check the sensor
datasheets for all I2C sensors to determine what sensors can and cannot be hosted on the same bus.

Currently, REV Robotics does not produce a cable or breakout board to connect two sensors to one I2C port
on the Hub. A custom cable will need to be made in order to wire more than one I2C to the Hub.

The internal IMU is hosted on I2C bus 0. See the configuration section below to learn more about
configuring a secondary sensor on bus 0.

Configuration

Before a sensor can be programmed it must be added to the Robot Configuration. The configuration file
stores all configured devices in the Control Hub's "hardwareMap," which can be called to in the code to
establish the line of communication between devices.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

In order to function, all FTC legal I2C devices have drivers installed into the SDK. With regards to
configuration, this means that the device has to be set to the drop-down menu item that corresponds with its
drivers. Visit the datasheet for the sensor you are trying to configure to see how to configure it.

The steps below shows a basic configuration for I2C devices. The I2C Bus 0 hosts the internal sensor
within the Hubs. In this example, the Color Sensor V3 is being added to Bus 0 as well.

 IMU

Step 1

While in the configuration select the I2C Bus 0 option. This will open a screen that shows the IMU.

Step 2

Press the Add button to add the Color Sensor to this bus. Select "REV Color Sensor V3" from the drop-down
menu and name the device.

Step 3

When you have finished configuring the sensor hit Done. The app will return to the previous screen.

Applications

How do I2C sensors help a robot navigate the world around it? The answer to this question is a bit more
diverse than it was for Analog or Digital sensors.

All three Color Sensors (V1-V3) sense color within a 2cm distance from the sensor. When mounted on the
robot this can help in autonomous period tasks where robots have to decide between several different
colored objects. Relic Recovery, Rover Ruckus, and Skystone all had autonomous tasks where the Color
Sensor helped robots choose between randomized jewels, minerals, and stones!

While the Color Sensors have some proximity sensing capabilities, the 2m Distance Sensor is able to detect
proximity with higher accuracy and reliability. When combined with odometry, the 2m Distance Sensor can
help the robot navigate obstacles on the field during autonomous!

The IMU has a built-in accelerometer, gyroscope, and magnetometer. There are a multitude of applications
for the IMU within autonomous op modes:

Use the Gyroscope to drive in the straight lines and turn during autonomous

Use the Accelerometer in conjunction with the gyroscope to avoid drift and give an approximation of
position/travel

Use the IMU with motor encoders to track and determine robot placement on a field

For more information on the I2C sensor specifications, coding examples, and more; click one of the links
below to head to the sensor datasheets

​

​ ​Color Sensor V3 (REV-31-1557)

​ ​Color Sensor V2 (REV-31-1537)

​ ​Color Sensor V1 (REV-31-1154)

https://docs.revrobotics.com/color-sensor/
https://docs.revrobotics.com/color-sensor/color-sensor-v2/untitled
https://docs.revrobotics.com/color-sensor/color-sensor-v1/color-sensor-v1-overview

2m Distance (REV 31 1505)

IMU

IMU Basics

Every REV Robotics Control Hub (), and Expansion Hubs () purchased before
December 2021, have a built in 9-axis IMU, or inertial measurement unit. The IMU incorporates three
sensors: a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis geomagnetic sensor. The accelerometer
measures the affect of forces on acceleration along the three axes. The gyroscope measures the rotational
location of the the Hubs along the axes. The geomagnetic sensor (or magnetometer) uses the Earth's
magnetic field to find orientation.

REV-31-1595 REV-31-1153

Expansion Hubs purchased AFTER December 2021 no longer include an internal IMU

The accuracy of the magnetometer within the IMU is affected by proximity to surrounding
magnetic fields.

The data considered and used by the IMU includes: rotation along each axis, forces of acceleration along
each axis, and magnitude of acceleration. The rotational measurements for the gyroscope play an important
part in the use of the gyroscope for positioning and location of the robot.

Heading is the measure of rotation along the z-axis. If the Hub is laying flat on a table, the z-axis points
upwards through the front plate of the Hub.

Pitch is the measure of rotation along the x-axis. The x-axis is the axis that runs from the bottom of the
hub, near the servo ports, to the top of the hub ,where the USB ports are.

Roll is the measure along the y-axis. The y-axis is the axis that runs from the sensor ports on the right to

https://docs.revrobotics.com/2m-distance-sensor/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

the motor ports on the left.

The orientation of the hub plays a large part into which measurement will be used to determine the
orientation of the robot as it moves.

Product Specifications

I2C Address: 0x28

Port: 0

How to Use?

Application

There are a multitude of applications for the IMU within autonomous op modes:

Use the Gyroscope to drive in the straight lines and turn during autonomous

Use the Accelrometer in conjunction with the gyroscope to avoid drift and give an approximation of
position/travel

Use the IMU with motor encoders to track and determine robot placement on a field

Configuration

Since some IMUs are already installed with in the Control or Expansion Hub the main concerns are Hub
position and configuration. The orientation of the Hub affects which axis is getting feedback.

The IMU always exists on I2C Bus 0.

To learn more on how to configure the IMU check out the introduction page. I2C

Adding an IMU to your Expansion Hub

If your Expansion Hub was purchased BEFORE December 2021, it already has an internal
IMU installed and you do not need to follow these steps.

Compatible External IMUs

There are a few options that will work for giving your Expansion Hub Gyro/IMU function.

1. with our and - This is directly supported in
the FTC Programing environment but is just a single-axis gyro, not a full IMU.
Integrating Gyro Logic Level Converter Sensor Cable Adapter

2. - This is currently out of stock, but is also supported in the FTC programming
environment. Code examples are listed on AndyMark's page, and this product includes the correct
cables to use within FTC.

navX2 Sensor Bundle

3. - This is the same IMU as in the Control Hub, but will require
you to either create an adapter cable or solder a cut to the board. Plugging this in and
configuring the IMU on I2C port zero will allow you to use and program the same as an internal IMU.

Adafruit 9-DOF Absolute Orientation IMU
sensor cable

Encoders

What is an Encoder?

An encoder is anything (device, software, person) that converts information from one format into another.
Some examples of encoding include:

A transducer, like a speaker, which converts an electrical signal into sound waves

Software which encodes an audio file into an mp3 to decrease file size

A stenographer (court reporter) takes courtroom dialog and converts it into a written record

This section is about rotary encoders which are electro-mechanical devices which convert the angular
position of a shaft, like on a motor, to an electronic signal. These signals can be fed into a microcontroller,
which controls all robot functions, and then used to provide real world data to make better programming
decisions.

There are two main types of encoders: absolute and relative.

Absolute encoders return the actual angle of the rotation (e.g. 30°). Absolute encoders maintain position
information if the power is removed, and position data is immediately available when power is reapplied
with no rotation needed to read the current angle. The relationship between the encoder value and the motor
shaft is set when assembled and will always stay the same. Commonly these encoders use a specially
printed pattern disk which are read and converted to a known angle. Generally, absolute encoders are
easier to use when programming, but they are more complicated to manufacture so are larger, or more
expensive.

Relative encoders, which are also referred to as incremental encoders, provide information about the
motion of the shaft (e.g. forward at 5 RPM), and only provide data while the shaft is rotating. One way to
remember this is that relative encoders return information on the incremental change of the motor output
shaft. Relative encoders only provide pulses as the motor turns, and interpreting these pulses into useful
information must be done externally. A relative encoder does not know what position it is in at start-up, but it
is possible to create a calibration program that must be run at every start-up to obtain reference point to
calculate an angle from.

https://modernroboticsinc.com/product/integrating-gyro/
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/rev-31-1384/
https://www.andymark.com/products/navx2-micro-navigation-sensor-bundle
https://www.adafruit.com/product/4646
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/

Encoders measure a real world change (shaft rotation) and convert it to an electrical signal. Two common
ways to do this are using optical or magnetic feedback:

Optical encoders have a disk with a series of either slots or a reflective pattern around the outside which is
attached to the motor shaft. A light shines on or through the disk where the light can pass through or reflect
onto a photodiode (device which produces an electric signal when light shines on it). These sensors can be
very light and compact, but can be very sensitive to anything that might interfere with the light reaching the
photodiode. Finger prints on a reflective disk, or dust from a dirty environment can interfere.

Magnetic encoders have a magnet attached to the shaft of a motor and use Hall effect sensors to detect the
changing magnetic field as the shaft rotates. Magnetic encoders are able to operate in harsh or dirty
environments.

Magnetic Quadrature Encoders

A 12 pole magnetic quadrature encoder is installed on the rear of both the HD Hex Motor and Core Hex
Motor. The output shaft of the motor extends from the rear of the motor case and a multi-pole permanent
magnet is attached to the shaft. There are two Hall effect sensors, marked ‘A’ and ‘B’, mounted next to the
magnet at 90° to each other. As each of the 12 poles passes across one of the Hall effect sensors, it creates
a change in the magnetic field causing the sensor to generate a measurable voltage signal.

Typical Encoder Configuration Installed on the Rear of a Motor

Quadrature encoders are a specific type of relative encoder that have four different output states. If the root
quad-, means four, but there are only two sensors in this encoder, where does the name come from? The
output from the two Hall effect sensors are called “Channel A” and Channel B” respectively; an example of
the output is shown below. In a single period (T), defined as the duration of time of one complete cycle in a
repeating pattern, the timing diagram has four distinct states (see a, b, c, and d below), hence a quadrature
encoder.

Clockwise Quadrature Encoder Output Timing Diagram

The offset from Channel A to Channel B is because the sensors are offset from each other by 90°. As the
motor rotates one sensor will see the change before the other. When the motor shaft rotates clockwise (CW),
Channel A will lead (the edge will rise before) Channel B. When the motor spins counter clockwise (CCW)
Channel A will lag (rise after) Channel B. If there was only one sensor it would still be possible to measure
the number of rotations, but not to detect the direction of the motor.

On HD Hex and Core Hex motors Channel A leads Channel B when positive voltage is applied
to the M+ terminal. However, there are times when this will not hold true in real life. Different
reduction gearboxes, or physically swapping the Channel A and Channel B encoder wires into
the controller, can reverse the relationship between the channels. Keep this in mind when
programming and troubleshooting your robot.

When the encoder is being read by a microcontroller, the two signals are compared to produce a count up
pulse or count down pulse. These pulses are counted as steps forward (CW) or backwards (CCW). Using
the specifications for the encoder being used, a count can be converted to degrees. This information can be
used to drive a robot arm to a specific angle, or tell a robot to drive a certain distance. Both the Control Hub
and Expansion Hub communicate to a microcontroller through the encoder ports.

Encoder Technical Specification Definitions

There is some conflicting terminology difference between encoder suppliers. This document
defines one of the most commonly agreed upon set of terms, however be aware that when
comparing between encoder specifications from different vendor’s terms may vary in meaning.

Every time the output goes through all four distinct combinations of output signals, it’s called a cycle (see a,
b, c, and d below). Encoders have a different cycles-pre-revolution(CPR) based on the number of poles on
the magnet used. The CPR is how many cycles are generated for one complete revolution of the encoder
shaft.

Encoder Cycle

An example output from one complete rotation of a 14 CPR encoder is shown in in the figure below. A 14
CPR rotation encoder may also be referred to as having 14 rises on channel A. Encoders are mounted to
the motor shaft, not the gearbox output shaft, so for a motor with a reduction gearbox attached this is less
than one full output shaft rotation.

Figure 4: Encoder Output for one Revolution of a 14 CPR Encoder

One reason to use CPR to define an encoder, rather than the commonly used PPR (Pulses per Revolution)
is when the encoder signal is decoded by the microcontroller it is possible to do 1x, 2x, or 4x decoding. For
1x decoding the micro controller would only “count” the rising signal on a single channel, while for 4x
decoding each rising or falling edge for both channels is measured as a “count.” Although 4x decoding is
one of the most common methods, because it’s based on how the electronics decode the signal from the
encoder, and not on the encoder hardware itself, it’s not an ideal method of defining the encoder hardware
specifications.

If we assume 4x decoding when each cycle is interpreted, the microcontroller can read the four distinct
outputs (a, b, c, and d) as individual steps. So for each CPR, the controller can read four counts/ticks. To
calculate the number of counts per rotation of the encoder shaft:

COUNTSPERROT AT ION ​oftheencodershaft) =(CPR(Cyclesperrotation) × 4

The actual cycles per rotation of the output shaft of the motor is depending on the gearbox that’s attached

COUNTSPERROT AT ION ​oftheoutputshaft) =(CPR(Cyclesperrotation) × 4 × Reduction

This can be calculated into the degrees per count. Assuming no additional reduction is added to the final
stage of the motor output (i.e. direct drive) the number of degrees per count is calculated as:

DEGREESPERCOUNT = 360°/COUNTSPERROT AT ION ​oftheoutputshaft)(

REV Motor Encoders

‌REV Robotics HD Hex Motors () and the Core Hex Motors () come with a
magnetic quadrature encoder already installed and an appropriate cable for connecting the encoder output
to the REV Robotics Control Hub () or Expansion Hub (). See Table 1 and Table
2 for relevant encoder details.‌

REV-41-1291 REV-41-1300

REV-31-1595 REV-31-1153

Core Hex Motor (REV-41-1300) Encoder Specifications

Core Hex Motor (REV-41-1300) Reduction 72:1

Free Speed (RPM) 125

Cycles per Rotation of the Encoder Shaft 4 (1 Rise of Channel A)

Counts per Rotation of the Output Shaft 288 (72 Rises of Channel A)

‌HD Hex Motor (REV-41-1291) Encoder Specifications

HD Hex Motor
Reduction

Bare Motor 40:1 20:1

Free Speed (RPM) 6000 150 300

Cycles per Rotation
of the Encoder Shaft

28 (7 Rises of Channel
A)

28 (7 Rises of Channel
A)

28 (7 Rises of Chann
A)

Counts per Rotation
of the Output Shaft

28 (7 Rises of Channel
A)

1120 (280 Rises of
Channel A)

560 (140 Rises of
Channel A)

Through Bore Encoder

https://www.revrobotics.com/rev-41-1301/
https://www.revrobotics.com/rev-41-1300/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

The REV Through Bore Encoder () is specifically designed with the end user in mind, allowing
teams to place the sensor in the locations closest to the rotation that they wish to measure. This rotary
sensor measures both relative and absolute position through its ABI quadrature output and its absolute
position pulse output.

REV-11-1271

The FTC Control System (Control Hub and Expansion Hub) only supports incremental encoder
input through the motor encoder ports at this time. Absolute pulse input is not supported.

Included with the Through Bore Encoder is a 5mm Hex insert and a 4-Pin JST PH to 6-pin JST PH
connector. The 6-pin connector is plugged into the Through Bore Encoder with the 4-pin connector plugging
into either the Control Hub () and Expansion Hub () Encoder Port. Both the A
and B channels of the encoder are used.

REV-31-1595 REV-31-1153

When using the 5mm Hex insert, press the insert into the 1/2” Hex hole before attaching to a mechanism. If
you are having difficulty pressing the insert into the encoder, try flipping the insert over and press it in. There
is a slight taper in the insert, so it is recommended to press the insert with the smaller end first. When
removing, it is recommended to push the insert out in the reverse order (larger end first).

For more information on the Through Bore Encoder check the .Through Bore Encoder Datasheet

Using 3rd Party Sensors

The Control Hub () and Expansion Hub () are 3.3V logic level devices. Many 3rd
party sensors, including ones that teams have previously purchased through vendors such as Modern
Robotics, are 5V logic level devices. Many of these legacy sensors are used with the REV system by using
a logic level converter. REV Robotics offers a Logic Level Converter () and an optional Sensor
Adapter Cable () so teams can more easily use their legacy sensors with the REV Control
System.

REV-31-1595 REV-31-1153

REV-31-1389
REV-31-1384

Wiring a Limit Switch or Micro Switch

Limit switches are common 3rd Party sensor type used with the REV Control System and require a custom
wiring harness. Each of the digital inputs on the Control and Expansion Hub have a pull-up resistor making
the digital inputs pulled "high" by default. Incorrect wiring of a limit switch to a digital input can create a
conflict making the Control or Expansion Hub unresponsive.

The recommended wiring is to connect the signal wire (n, n+1) to the common pin (COM), the ground wire to
the normally closed (NC) pin, and not connect to the normally open pin (NO) of the limit switch. With this
wiring when the switch is in its normal state (not pressed), the switch is closed connecting the signal to

ground (reporting FALSE in code). When pressed, the switch is open and disconnects the signal from

ground (reporting TRUE in code).

The power wire and the unused signal wire will not be used in this set up process.

https://www.revrobotics.com/rev-11-1271/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://docs.revrobotics.com/through-bore-encoder/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/rev-31-1384/

COM NO NC

If you need the opposite behavior (FALSE for pressed, and TRUE for not pressed) switch the
ground (black) wire to the NO position instead of NC. Alternatively changing the logic in code will
have a similar effect.

Logic Level Converter

The REV Robotics Logic Level Converter is a circuit board which generates a 5V output from the 3.3V input
and uses a MOSFET on each signal line to create a bidirectional communication appropriate for a variety of
digital signals include I2C communication. For more information on how bidirectional level shifting
communication is accomplished, please reference the .NXP Application Note AN10441

The Logic Level Converter is only needed for the Digital and I2C senor ports on the Control or
Expansion Hub when using a 5V device.

Connecting 5V Encoder

The Logic Level Converter () pinout directly matches the encoder cable pin out for FTC legal
3rd party motors. Encoder cables plug directly into the Logic Level Converter board and then the 4-pin JST
PH Cable (), which is included with the Logic Level Converter, is plugged into the appropriate
Control Hub () Encoder Port. Motors which are terminated with Anderson Power Pole style
connectors use the JST VH to Anderson Power Pole Style () cable to connect to the motor
output port on the Control Hub.

REV-31-1389

REV-31-1407
REV-31-1595

REV-31-1381

http://www.nxp.com/documents/application_note/AN10441.pdf
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1381/

All REV Robotics Motors work directly with the REV Control and Expansion Hubs. No Logic
Level Converter is needed for REV Motors.

Connecting a 5V Sensor

A variety of 5V sensors are usable with the Control Hub () when used with a Logic Level
Converter (). For some Modern Robotics I2C sensors a Logic Level Converter, and a change
in wiring to match the pinout of the Control Hub are needed. Teams can either purchase a Sensor Cable as
an add on to the Logic Level Converter Kit which will cross over the correct wires, or they can carefully
rearrange the pin order on the sensor cable. If using the Sensor Cable, connect the sensor to the Control
Hub as shown below. It is recommended to zip tie the connection between the sensor and the sensor cable
to prevent accidental disconnects. See the for more information on hardware
required for other sensors.

REV-31-1595
REV-31-1389

Sensor Compatibility Chart

Sensor Compatibility Chart

To determine if your existing sensors are used with the Control Hub () or Expansion Hub
() along with additional hardware needed, see the table below.

REV-31-1595
REV-31-1153

Sensor Compatibility Table

Sensor Type Compatible Adapters Needed

Absolute Orientation
IMU Fusion Breakout
- BNO055 I2C Yes

3.3V Compatible
Custom Wiring

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

2472Adafruit Harness Needed

RGB Color Sensor
with IR filter and
White LED -
TCS34725
1334
AdaFruit

I2C Yes
3.3V Compatible
Custom Wiring
Harness Needed

Color Sensor
45-2018
Modern Robotics

I2C Yes

​

​

Compass
45-2003
Modern Robotics

I2C Yes

​

​

Integrating Gyro
45-2005
Modern Robotics

I2C Yes

​

​

IR Locator 360
45-2009
Modern Robotics

I2C Yes

​

​

IR Seeker V3
45-2017

Modern Robotics

I2C Yes

​

​

Ranger Sensor
45-2008
Modern Robotics

I2C Yes

​

​

NeveRest Motor
AM-3461, AM-3102,
AM-2964a, AM-3103,
AM-3104
AndyMark

Quad Encoder Yes

​

​

HD Hex Motor
REV-41-1301
REV Robotics

Quad Encoder Yes
Directly Compatible
No Custom Adapters
Needed

Core Hex Motor
REV-41-1301
REV Robotics

Quad Encoder Yes
Directly Compatible
No Custom Adapters
Needed

12v 4mm Motor Kit
50-0119
MATRIX

Quad Encoder Yes

​

​

12v 6mm Motor Kit
50-0120
MATRIX

Quad Encoder Yes

​

​

Standard Motor Kit
50-0001
MATRIX

Quad Encoder Yes

​

​

Max Motor Shaft
Encoder Kit
W38000
Tetrix

Quad Encoder Yes

​

​

Limit Switch
45-2401
Modern Robotics

Digital Yes
No Adapter Needed
Custom Wiring
Harness Required.

Rate Gyro
45-2004
Modern Robotics

Analog No
Not Officially
Supported

Optical Distance
Sensor
45-2006
Modern Robotics

Analog No
Not Officially
Supported

Touch Sensor No Adapter Needed

45-2007
Modern Robotics

Analog Yes Custom Wiring
Harness Required

Light Sensor
45-2015
Modern Robotics

Analog No
Not Officially
Supported

Magnetic Sensor
45-2020
Modern Robotics

Analog No
Not Officially
Supported

Useful Links

Legacy Documentation

Configuring Your Android Devices

When using Android Phones as your Robot Controller and Driver Station devices, there are several steps
you need to take in order to get the phones up and running. This section will go through the process of
installing a Driver Station and Robot Controller application onto a phone using the REV Hardware Client, as
well as the process for renaming your Wi-Fi direct network.

For information on how to pair a configured Android phone with a Control Hub please see our
article in the Getting Started with Control Hub section. Driver Station Pairing to Control Hub

Installing the Driver Station Application

Android Developer Options

In order to install the Driver Station Application onto and Android phone, the phone's developer settings and
USB debugging options need to be turned on.

The developer options on Android Devices are hidden within the phone as a default. Different phone
manufactures have different ways of accessing the developer options. However, once the developer options
are available in the phone's settings, the steps for activating USB debugging and development settings are
similar.

Before moving forward it is advised to look up where the developer options on your Android

Device are located. For Motorola users, the has information on how to
unlock the developer options.

Motorola Support Page

​

Open the Android Devices settings

​

https://motorola-global-portal.custhelp.com/app/answers/detail/a_id/160067/~/developer-options

Scroll to the bottom of the settings, where the
unlocked developer options are available. Open
the developer options

​

At the top of the developer options page is an on/off
switch. Turn the developer options on.

​

The device will open a confirmation message.
Select 'OK.'

​

Scroll through the developer options until you find
the Debugging section. Turn USB Debugging on.

​

Another confirmation message will appear, click
'OK.'

​

USB debugging is now on! You can move on to the steps for installing the application.

Driver Station Application

The following steps will go through how to install the Driver Station Application via the REV
Hardware Client. It is possible to install the application via the app store or via the

 as well.
FTC GitHub

repository

Installing Driver Station Application on an Android Device using the REV Hardware CliInstalling Driver Station Application on an Android Device using the REV Hardware Cli……

Connect the Android Device to a PC with the installed.REV Hardware Client

https://github.com/FIRST-Tech-Challenge/FtcRobotController
https://www.youtube.com/watch?v=wpE50vjXvdM
https://www.revrobotics.com/software/#REVHardwareClient

Startup the REV Hardware Client. Once the Android Device is fully connected it will show up on the front
page of the UI under the Hardware Tab. Select the Android Device.

After selecting the Connected Hardware the Update tab will pop up. Under Driver Station App select
Download.

Once the Driver Station App has downloaded, select Install.

When the application installation has completed the status for the Driver Station App will change to "Up-to-
Date."

Renaming Your Smartphone

Part of the process for configuring your Android Device is changing the Wi-Fi Direct network. The intent of
this process is to give your Robot Controller and Driver Station phones an identifiable and unique network
name. This is a general best practice when working with networks, but is also a requirement for FIRST
programs.

FIRST has specific naming convention requirements for Robot Controllers and Driver Stations.
Please check your programs game manual for more information on what you need to name your
devices.

Before moving forward it is advised to look up where the Wi-Fi direct options on your Android
Device are located. This guide goes over where to make this change on the Moto E5.

​

Locate settings in the application list for your
Android Device. Select the settings application

​

In the settings application, look for the Wi-Fi or
Network & Internet settings and select it.

Note: the naming convention for the network
settings will vary depending on device model and
manufacturer

​

In the network settings on Moto E5, scroll to the
bottom and look for Wi-Fi preferences. Select Wi-
Fi preferences.

Note: on other phone models Wi-Fi Direct settings
will likley be found in a different place. Please look
up the Wi-Fi direct information for your phone
model.

​

In Wi-Fi preferences select Advanced. ​

Select Wi-Fi Direct. ​

In the Wi-Fi Direct settings select the three vertical
dots in the upper right hand corner.

​

Select Configure device. ​

Change the name of your device to something
unique and identifiable. For this example the

device has been renamed to REVDemo_DS. It is
also good to check the Wi-Fi Direct Inactivity
timeout and confirm it is set to Never disconnect.
Hit 'save' to confirm your changes.

Note: If you are competing in robotics competitions
you may need to follow a Wi-Fi Direct naming
convention set by the competition rules. Check any
relative documentation to confirm that you are
following the correct naming convention.

​ ​

Expansion Hub with Android Device Robot Controller

After receiving the Expansion Hub it is advised to unbox the device, power the Expansion Hub on, and start
the configuration process. Below are the required materials to run through the initial bring up of the
Expansion Hub and links to the different steps of the process.

Required Materials

Expansion Hub ()REV-31-1153

12v Slim Battery ()REV-31-1302

Properly Configured Driver Station (DS)

Properly Configured Robot Controller (RC)

Etpark Wired Controller for PS4 ()REV-39-1865

USB A Female to Micro USB ()REV-31-1807

Optional Additional Materials needed to :Connect an Expansion Hub

Expansion Hub ()REV-31-1153

XT30 Extension Cable ()REV-31-1392

JST PH 3-pin Communication Cable ()REV-31-1417

Driver Station and Robot Controller Pairing

When you first receive your Expansion Hub, you will have to install the Driver Station and Robot Controller
Applications and pair (link) your Driver Station (Android Device) to your Robot Controller. The following

https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1302/
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices
https://www.revrobotics.com/rev-39-1865/
https://www.revrobotics.com/rev-31-1807/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/

sections of the page will walk through how to install the applications and how to connect the Driver Station
to the Robot Controller's Network.

Install Applications

Android Developer Options

In order to install the Driver Station Application or Robot Controller Application onto and Android phone, the
phone's developer settings and USB debugging options need to be turned on.

The developer options on Android Devices are hidden within the phone as a default. Different phone
manufactures will have different ways of accessing the developer options. However, once the developer
options are available in the phone's settings, the steps for activating USB debugging and development
settings are similar.

Before moving forward it is advised to look up where the developer options on your Android
Device are located. For Motorolla users, the Motorolla Support Page has information on how to
unlock the developer options.

​

Open the Android Devices settings

​

Scroll to the bottom of the settings, where the
unlocked developer options are available. Open
the developer options

​

At the top of the developer options page is an on/off
switch. Turn the developer options on.

​

The device will open a confirmation message.
Select 'OK.'

​

Scroll through the developer options until you find
the Debugging section. Turn USB Debugging on. ​

Another confirmation message will appear, click

'OK.'

​

USB debugging is now on! You can move on to the steps for installing the application.

Driver Station Application

The following steps will go through how to install the Driver Station Application via the REV
Hardware Client. It is possible to install the application via the app store or via the FTC GitHub
repository as well.

Connect the Android Device to a PC with the REV Hardware Client installed.

Startup the REV Hardware Client. Once the Android Device is fully connected it will show up on the front
page of the UI under the Hardware Tab. Select the Android Device.

After selecting the Connected Hardware the Update tab will pop up. Under Driver Station App select
Download.

Once the Driver Station App has downloaded, select Install.

When the application installation has completed the status for the Robot Controller App will change to "Up-
to-Date."

Robot Controller Application

The following steps will go through how to install the Robot Controller Application via the REV
Hardware Client. It is possible to install the application via the app store or via the

 as well.
FTC GitHub

repository

Connect the Android Device to a PC with the REV Hardware Client installed.

Startup the REV Hardware Client. Once the Android Device is fully connected it will show up on the front
page of the UI under the Hardware Tab. Select the Android Device.

After selecting the Connected Hardware the Update tab will pop up. Under Robot Controller App select
Download.

https://github.com/FIRST-Tech-Challenge/FtcRobotController

Once the Robot Controller App has downloaded, select Install.

When the application installation has completed the status for the Robot Controller App will change to "Up-
to-Date."

Driver Station and Robot Controller Pairing

You should update your Driver Station(DS) and Robot Controller(RC) phones to the latest app
version in order to use the Expansion Hub controller. The minimum compatible version is 3.1
released on May 10th, 2017

Please ensure that the Driver Station and Robot Controller phones are properly configured and paired.
Refer to the latest pairing and troubleshooting instructions provided by in the .FTC Control System Wiki

Wiring Diagram

System Wiring Diagram

Before configuring your Expansion Hub, devices must be connected to the Expansion Hub. Below is a
sample wiring diagram to show a sample of actuators and sensors usable with the Expansion Hub.

https://github.com/ftctechnh/ftc_app/wiki

System Wiring Diagram

Configuration

Every device connected to the Expansion Hub () will need to be added to the Robot
Configuration file before you can use the device in your program. The Robot Configuration will allow you to
give your sensors and actuators meaningful names that you can reference while programming.

REV-31-1153

For this example, we will configure a simple two motor robot drivetrain.

Step Image

Select the menu on either the Driver Station or
Robot Controller. Then select “Configure Robot”.

​ ​

https://www.revrobotics.com/rev-31-1153/

Select “New” in the top left hand corner. ​ ​

Select “Expansion Hub Portal 1” (embedded). ​ ​

Select “Expansion Hub 1”. ​ ​

Select “Motors”. ​ ​

Select the Drop Down menu for “Port 0” then select
the motor type attached to the port. In the case of
the Minibot in Figure 4, select the “Rev Robotics
Core Hex Motor”.

​ ​

Press “Enter motor name here” and name the motor
“left_drive”.
This is the name that you will use when you are
programming your robot to control this motor.
Always use descriptive names so that you can
remember what a device does when you are
programming.

​ ​

Repeat the process for “Port 1” and name the motor
“right_drive”.

​ ​

Press “Done” once to go back to the list of device
ports and then select I2C Bus 0.

​ ​

Add the built-in REV Expansion Hub IMU. Name it
“imu”

​ ​

Press the “Done” button (at the top left corner of the
page) 3 times.

​ ​

Press “Save”. ​ ​

Enter “miniBot” as your configuration name, then
select “OK”.

​ ​

You now have an active configuration called

“miniBot”. Press the Android back button to return to
the Driver Station page.

​ ​

REV Hub Interface Software

The REV Hub Interface is a beta software allowing for a direct connection from a REV Expansion Hub and
its peripherals to a Windows PC.

This interface provides a method for teams to prototype with motors, servos, and sensors in a way that is
faster and easier than setting up an entire robot control system. It is also a valuable troubleshooting tool that
can help isolate the cause of an issue and determine if it is electrical or software related. The REV Hub
Firmware can also be updated and recovered through this interface in addition to the Robot Controller
Application.

Download the Latest Hub Interface Software - Version 1.2.0

The REV Hub Interface Software only works with the REV Expansion Hub and not the REV
Control Hub

System Requirements

Operating System: Windows 7 or newer*

Processor: 64-bit

RAM: Yes

 The newest versions of Windows should automatically install the required USB drivers.
Alternatively, you can download the latest drivers from the .FTDI VCP website

Installation Instructions

1. Download the Hub Interface software installer above.

2. Run the installer.

3. Run the REV Hub Interface Software from the Windows Start Menu or the desktop shortcut

Connecting and Controlling an Expansion Hub

https://www.revrobotics.com/content/sw/REVHubInterface-1.2.0.exe
https://www.ftdichip.com/Drivers/VCP.htm

1. Connect your Expansion Hub to the computer with a USB A to USB Mini-B cable.
2. Run the REV Hub Interface Software.

3. The software will scan and connect to the Expansion Hub. The various peripheral tabs will populate
with controls once connected.

Some peripherals, such as DC Motors and Servo Motors, require a battery to be connected to the
Expansion Hub in order to operate through the REV Hub Interface.

Alternative Installation Method

You may also download the following zip file if you would rather unzip the application in a directory of your
choice. This method shouldn't require administrator privileges.

REV Hub Interface Software Zip File

LATEST HUB INTERFACE SOFTWARE CHANGE LOG - VERSION 1.2.0

Display encoder values on 'DC motors' tab.

Added support for REV Color Sensor V3.

Display proximity values along with RGBC for REV color sensors.

Display REV Hub Interface version on the 'Firmware' tab.

Changed behavior of 'INIT' and 'POLL' buttons on 'I2C'. User can no longer poll a device until it has
been successfully initialized.

Added ability to set LED pattern.

Bug fix where 'POLL' had to be pressed twice to read values from the IMU.

Bug fix where status LED would continue to flash blue the second time REV Hub Interface is connected.

Allow user to press enter key to update motor/servo values.

Fixed gyro labels on IMU tab and corrected units for linear acceleration.

https://www.revrobotics.com/content/sw/REVHubInterface-1.2.0.zip

