DUQO Control System

Introduction

The REV Control Hub is an affordable robotics controller providing a platform for the interfaces required for
building robots. The Control Hub works with the Expansion Hub and Driver Hub to create a complete
robotics control system for both the classroom and the competition. These devices are most commonly used
within the FIRST Tech Challenge (FTC), FIRST Global Challenge (FGC), and in the classroom for
educational purposes.

How to use this documentation?

This documentation is intended as the place to answer any questions related to the REV Robotics Control
Hub, Driver Hub, and Expansion Hub used in the FIRST Tech Challenge and FIRST Global Challenge.

e Looking to get an idea of how to use the system before your Control Hub arrives? Reading
through each section will help, but we specifically recommend the guides on getting started with the
Control Hub and the programming language options section.

e Have a specific question? Feel free to head straight to it using the navigation bar to the left. Each
section is grouped with other topics that are similar.

¢ Having trouble finding what you are looking for? Try the search bar in the upper right or read the
section descriptions below to find the best fit.

Getting started building robots can be an intimidating process. The following documentation is here to make
getting started a bit easier. There are a number of examples to get started with the Control System and we
are committed to adding content to make it more accessible for people to use REV.

If there is a question that is not answered by this space, send our support team an email;
support@revrobotics.com. We are happy to help point you in the right direction.

What is in each section?

System Overview

This section contains information regarding all of the major mechanical specifications of the REV Control
Hub and Expansion Hub. These sections include port pinout information, protection features, and the types
of cables used with the devices.

Getting Started

Take the Control Hub or Expansion Hub from out of the box through generating the first configuration file.
This includes the process for changing your Control Hub's Name and Password as well as connecting to
your Driver Hub. Also includes information on ways to add additional motors to the control system through
adding a SPARKmini Motor Controller or an Expansion Hub.

Updating and Managing

This section covers how the information needed to keep your Control Hub, Expansion Hub, and Driver Hub
up to date with the latest software. This section also includes information on using the REV Hardware Client
to update, program, and manage these devices as well.

Programming

From just getting started by writing your first Op Mode to working with closed loop control, this section covers
the information needed to start programming.

Sensors

Sensors are often vital for robots to gather information about the world around them. Use this section to find
how to use REV sensors and information on the different sensor types.

Getting Started with Control Hub

After receiving the Control Hub itis advised to unbox the device, power the Control Hub on, and start the
configuration process. Below are the required materials to run through the initial bring up of the Control Hub
and links to the different steps of the process.

Section Summary

In order to manage the Control Hub (REV-31-159!
or programming using the onboard programming
languages you must have access to the Robot
Controller Console. Follow through the steps in th
section to ensure your Control Hub is connecting

properly

Connect to the Robot Controller Console

Once in the Robot Controller Console, update yot
Updating Wi-Fi Settings Control Hub's Wi-Fi settings for better performanc
and network security.

A Driver Station is required to in the REV Control
System, to run code remotely. This section walks
through the steps of connecting a Driver Station
device to a Control Hub.

Connecting Driver Station to Control Hub

Showcases what hardware components plug into

https://www.revrobotics.com/rev-31-1595/

Wiring Diagram

Next Steps

Required Materials

e Control Hub (REV-31-1595)

12v Slim Battery (REV-31-1302)

Driver Hub (REV-31-1596)

Etpark Wired Controller for PS4 (REV-39-1865)

USB A Female to Micro USB (REV-31-1807)

Windows PC running the REV Hardware Client

which ports on the Control Hub.

Once the hardware components are connected to
the Control Hub, the basic steps for getting startec
have been covered. This section covers the
important next steps you should take for working
with and maintaining your Control System.

Optional Additional Materials needed to Connect an Expansion Hub:

e Expansion Hub (REV-31-1153)

e XT30 Extension Cable (REV-31-1392, included with Expansion Hub)

e JST PH 3-pin Communication Cable (REV-31-1417, included with Expansion Hub)

Videos

Using a Web Browser

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-31-1596/
https://www.revrobotics.com/rev-39-1865/
https://www.revrobotics.com/rev-31-1807/
https://docs.revrobotics.com/rev-control-system/managing-the-control-system/rev-hardware-client
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/
https://www.youtube.com/watch?v=fyxpptqQumw

Using the REV Hardware Client

Connect to the Robot Controller Console

In order to manage the Control Hub (REV-31-1595) or programming using the onboard programming
languages, a computer or other Wi-Fi enabled device will need to connect to the Control Hub's Robot
Controller Console. The Robot Control Console is a local network created by the Control Hub to program
and manage the device.

@ This example assumes the user uses Windows 10 as their operating system. If you are not using
a Windows 10, the procedure to connect to the network will differ. Refer-to your device’s
documentation for details on how to connect to a Wi-Fi network.

By default, the Control Hub has a hame that begins with "FTC-" or "FIRST-" followed by four characters that
are assigned randomly. The default password for the network is "password". If either of these is forgotten,
there are a few ways to recovery or reset the password on the Control Hub.

There are two ways to access the Robot Controller Console. The first will cover how to access the Robot
Controller Console with the REV Hardware Client. It is recommended to use the REV Hardware Client as it
will allow the user to access the Robot Controller Console over a wired connection. The second will run
through accessing the Robot Controller Console via a web browser.

https://www.youtube.com/watch?v=YdgaknRQvKQ
https://www.revrobotics.com/rev-31-1595/

REV Hardware Client

Download the latest version of the REV Hardware Client and install on a Windows PC.

Steps

Control Hub

Power on the Control Hub, by plugging the 12V
Slim Battery (REV-31-1302) into the XT30
connector labeled “BATTERY” on the Control Hub.

The Control Hub is ready to connect with a PC

when the LED turns green. Note: the light blinks : RA |
blue every ~5 seconds to indicate that the Control HUB | | ~5Seconds

Hub is healthy.

Plug the Control Hub into the PC using a USB-A to
USB-C Cable (REV-11-1232)

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the Ul
under the Hardware Tab. Select the Control Hub.

@) REV Hardware Client - [m] X

Hardware Downloads About

Connected Hardware

Control Hub REV-HCDEMO
UsB

Last check: 9:50 am

& Scan For Devices

Don't see your device? (@ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Select the Program and Manage tab.

https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-11-1232/

This will take vou to the Robot Controller Console build into the REV Hardware Client.

@ REV Hardware Client — O X

Hardware Down About

Connected Hardware

Last check: 9:50 am

~ Control Hub Operating System

Current Version: 1.1.2-betal Up-to-Date
Release Notes

Control Hub REV-HCDEMO

1 E
L T

v Robot Controller App

Current Version: 5.5 Up-to-Date
Release Notes

v~ Hub Firmware

Current Version: 1.8.2 Up-to-Date
Release Notes

& Scan For Devices
Don't see your device? 57

-

@© Report an lssue

@ At this pointitis useful to update the Control Hub Operating System, Robot Controller App, and
the Hub Firmware.

Once in the Robot Controller Console, the homepage of the console will appear. In the upper right corner is
the navigation menu which will allow users to access the Blocks, OnBot Java, and Manage pages within the
console.

) REV Hardware Client — [m| *

Hardware Dow About

Connected Hardware i Control Hub REV-HCDEMO USB

Backup and Restore

Last check: 9:50 am

3- le- Control Hub REV-HCDEMO

Robot Controller Connection Info

The connected robot controller resides on the wireless network named:
REV-HCDEMO

The passphrase for this network is:
password

Robot controller status:
Server OK (Running since Dec 31, 6:8@ PM)

Active connections:
Windows #1 connection.html

& Scan For Devices

\ Vi 7
Don't see your device? @ Report an Issue

Web Browser

With the Control Hub powered, access the Wi-Fi network selector. For Windows 10 devices, click the Wi-Fi
Network icon in the lower right corner of the desktop.

Look for the Wi-Fi that matches the naming protocol of the device.

(i) To ensure you are able to locate the correct device, it is recommended that you first connectin a
location without other active Control Hubs or significant Wi-Fi connections.

N

Secured

-BEMAO

ed

N

N

HP-Print-EF-Laserlet Pro MFP

secured

N

NETGEAR10

ed

NETGEAR10-5G

Secured

N

REV-Guest

Secured

N

nection metered.

o @)
Mobile
Airplane mode hotspot

@ Depending on your version of Windows or other theme settings your Wi-Fi Networks list may vary
in appearance.

Once you have found the target network in the list, click on it to select it then press connect.

@ Connect automatically

MHS-Guest
Secure

NETGEAR10

e

NETGEAR10-5G

p
Mobile
Airplane mode hotspot

FTC-EMAO

ed

Enter the network security key

Cancel

NETGEAR10

!
Mobile
Airplane mode hotspot

‘ @ Passwords are case sensitive. Make sure that your spelling and capitalization matches the

| original spelling and capitalization for the password.

Once a wireless connection is established, the status is displayed in the wireless settings for the device.

FTC-BMACO
No Internet, secured

Properties

Disconnect

/\ When connected to the Control Hub, the connected device will not have access to the Internet. It
only has direct access to the Control Hub.

Open a web browser (Chrome, Firefox, Internet Explorer) and navigate to "192.168.43.1:8080" through the
address bar.

¥ 192.168.43.1:8080/%page=conne. X +

= C A Notsecura | 192.168.43.1

bot
FIRST. coniroler Blocks OnBotJava Manage
console

Robot Controller Connection info

The connected robot controller resides on the wireless network named
FTC-BMAO

The passphrase for this network is:
password

Robot controller status:
Server OK (Running since Dec 31, 6:00 PM)

Active connections
Windows #1 connection_htmi

From the Robot Controller Console users can update the Wi-Fi settings, upgrade the operating system and
firmware, as well as program the device. Itis strongly recommended that you go through all steps above
before you begin programming.

Updating Wi-Fi Settings

One of the first recommendations made to users of the REV Control System is to update Wi-Fi settings,
specifically the name and the password. All REV Control Hub's come with a default network name and
password. Itis useful to change the name and password especially in environments where there are
multiple Control Hubs running like at an event or in a classroom. Changing from the default adds the
element of network security back to the Hub by reducing the potential for access from outside sources.

With the release of Robot Controller Application 5.5 there have been some major changes to the process of
changing Control Hub name, password, Wi-Fi Channel, and Wi-Fi band. Previously changes to the name
and password had to be made separately. Each change would reset the network and require users to
reconnect to the network in order to change anything else. With 5.5 all changes can be made at once.

The Control Hub (REV-31-1595) can utilize either the 2.4 GHz or 5 GHz Wi-Fi band. In OS versions 1.1.1
and older the Control hub defaults to a channel on the 2.4 GHz band. REV Robotics advises that during
competition teams utilize a 5 GHz channel for robot communication. Consult the table below for Driver
Station devices that can operate on the 5 GHz band.

@ When using OS 1.1.2 the Control Hub operates by default on the 5Ghz band. To switch to the 2.4
Ghz band without the REV Hardware Client, see the Managing the Wi-Fi Network section.

Supported Android Devices and Wi-Fi Band Capabilities

Phone Wi-Fi Band

REV Driver Hub (REV-31-1596) 2.4 GHz & 5 GHz (Dual Band)
Moto G (2nd generation) 2.4 GHz (Single Band)

Moto G (3rd generation) 2.4 GHz (Single Band)

Moto G (4th generation) 2.4 GHz (Single Band)

Moto G5 2.4 GHz & 5 GHz (Dual Band)
Moto G5 Plus 2.4 GHz & 5 GHz (Dual Band)
Moto E4 2.4 GHz & 5 GHz (Dual Band)
Moto E5 2.4 GHz & 5 GHz (Dual Band)
Moto E5 Play 2.4 GHz & 5 GHz (Dual Band)

The following section will highlight how to access and make changes within the Wi-Fi settings. This section
will use the REV Hardware Client to showcase how to make these changes. Once a user has connected to
the Robot Controller Console, either via the Hardware Client or a web browser, the steps for accessing Wi-
Fi settings are the same.

@ The following steps assume that users have already connected to the Robot Controller Console.
Please go to the Connect to the Robot Controller Console if this is not the case.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1596/

Steps to Updating Wi-Fi Settings

While in the Robot Controller Console select the menu button. In the image below the menu button is
highlighted by an orange square in the upper right-hand corner.

) REV Hardware Client — [m| *

Hardware Downloads ADOUL

Connected Hardware

Program and Manage

Last check: 9:50 am

Control Hub REV-HCDEMO

T E
!

Robot Controller Connection Info

The connected robot controller resides on the wireless network named:
REV-HCDEMO

The passphrase for this network is:
password

Robot controller status:
Server OK (Running since Dec 31, 6:08 PM)

Active connections:
Windows #1 connection.html

£ Scan For Devices
Don't see your device?

(@ Report an Issue

When the menu opens, select Manage.

@) REV Hardware Client - O X

Hardware Downloads ADOUT

Connected Hardware ‘ ' Control Hub REV-HCDEMO

Last check: 9:50 am

Control Hub REV-HCDEMO

I E
;‘EI}

Blocks
OnBotJava

Manage

Help

Robot controller status:
Server OK (Running since Dec 31, 6:00 PM)

Active connections:
Windows #1 connection.html

£ Scan For Devices
Don't see your device? - (@ Report an Issue

The Manage page is where the Wi-Fi Settings live. The following steps will show and discuss each change
as itis made. Please keep in mind the following warning while moving through the steps:

You will need to reconnect to the new Wi-Fi network after changing the name and/or password. This is true
for any Wi-Fi connection, but if you are accessing the REV Hardware Client via a USB connection the Hub
will stay connected. Though, you may need to close and reopen the Hardware Client in order to see the
changes.

@ Not all aspects of the Wi-Fi settings need to be changed. If you need to change name and
password and do not need to mess with the Wi-Fi band or channel, leave those settings at
default, and click Apply Wi-Fi Settings.

) REV Hardware Client — O X

Hardware Downloads About

Connected Hardware ¥ Control Hub REV-HCDEMO

Program and Manage Backup and Restore

Last check: 3:50 am

Conirol Hub REV-HCDEMO
usB

WiFi Settings
Name

REV-HCDEMO

New Password

[Show Password

'WiFi Band
() 24GHz @® 5GHz

The & GHz WiFi band is highly recommended, unless you need to connect older devices that
only support 2.4 GHz WiFi

WiFi Channel

auto (5 GHz) v

ra
& Scan For DEV\C_ES‘) . Apply WIFi Settings
Don't see your device @ Repanan Issue

You will need to reconnect to the new WIiFi network after chanaina the Control Hub's name and/o h

Changing Control Hub Name

Under Wi-Fi Settings, there is an option to change the name of the Control Hub.

@ Itis useful to change the Control Hub name to something unique, especially in environments
where there are multiple Control Hubs running like at an event or in a classroom. Changing from
the default adds the element of network security back to the Hub by reducing the potential for
access from outside sources.

For FTC teams you will want to change the name from the default to team number - RC. (i.e. 99999-RC)

Changing the Control Hub Password

Under Wi-Fi Settings, there is an option to change the password of the Control Hub. There are not any
restrictions on the password. Changing it from the default is advised but it does not have to change to
anything complicated.

@ The default password '‘password' is a well know password by Control Hub users, since itis the
default for all Control Hubs. Staying with the default password significantly reduces network
security. Changing from the default adds the element of network security back to the Hub by
reducing the potential for access from outside sources.

Changing the Wi-Fi Band and Channel

As mentioned in the introduction section of this page, the Control Hub is capable of utilizing either the 2.4
GHz or 5 GHz Wi-Fi band. This change is also made within the Wi-Fi Settings.

) REV Hardware Client — m} X

Hardware Downloads About

Connected Hardware y Control Hub REV-HC

Last check: 3:40 pm

Control Hub REV-HC

. 3
i-4a|

[0 Show Password

WiFi Band

() 24CGHz @ 5GHz

The 5 GHz WiFi band is highly recommended, unless you need to connect older devices that only
support 2.4 GHz WiFi.

WiFi Channel

auto (5 GHz) v

Apply WiFi Settings

You will need to reconnect to the new WiFi network after changing the Control Hub's name and/or
password

If you are unable to connect to the Control Hub's network after switching to the 5 GHz band, you can
perform a WiFi factory reset by holding down the Control Hub's button while you tumn it on, until you
see a rapid sequence of color changes on the Control Hub's light. The WiFi network name and
password will be reset to their default values, and the WiFi band will be set to 2.4 GHz.

& Scan For Devices
Don't see your device? =

Download Robot Controller Logs @ Reportan ISSU4 .

The Robot Controller Console makes it easy to change between the 2.4 GHz an 5GHz bands. It is advised
to check the Legal Android and Wi-Fi Band Capabilities table to determine which band to operate in.

Once a Wi-Fi band is chosen there are two options for dealing with Wi-Fi channels. One option is to let the
Control Hub auto default on a channel. The other is to set a specific channel. Both options can be accessed
via the drop down menu under the Wi-Fi channel section of the Wi-Fi settings.

Itis valuable to know how to change the Wi-Fi Band and Channel as technical staff at an event can request
to change those settings.

@ The Wi-Fi band and channel can be changed via the Driver Station Application. For more
information on how to make these changes from the Driver Station please see Managing the Wi-
Fi Network section.

Connecting Driver Station to Control Hub

When you first receive your Control Hub (REV-31-1595), you will have to connectitto a supported Android
Device, like a Driver Hub. The following section of the page will walk through how to pair a Driver Hub or
Driver Station phone to a Control Hub.

@ This section assumes you have already gone through the process of setting up your Driver
Station device. If you have not please go through the following guides for more information on
getting started with a Driver Station:

e Supported Android Devices and Wi-Fi Band Capabilities - To know what supported Android
Devices can be used as a Driver Station

e Getting Started with Driver Hub - To setup a Driver Hub

e Configuring Your Android Devices - To setup a non Drive Hub supported Android Devices as
a Driver Station

Connecting the Driver Station with the Control Hub

https://www.revrobotics.com/rev-31-1595/
https://www.youtube.com/watch?v=NcOK_JPGil8

@ The procedure for pairing the Driver Hub and the Control Hub only needs to be performed once
for each set of hardware. If you replace your Driver Hub or Control Hub, this procedure will need
to be repeated.

Power on the Control Hub by plugging the 12V Control Hub

Slim Battery into the XT30 connector labeled
“BATTERY” on the Control Hub. You may also
choose to include a switch between the Battery and
Control Hub, if you prefer.

LEL)

]
W REV £ U
R HUB

=

Silm Battery

.
-
=5
fm
=
i
-
b
=
-
==
L

5

g
{

The Control Hub is ready to pair with the Driver
Station when the LED turns green. Note: the light m&
blinks blue every ~5 seconds to indicate that the ‘ HUE
Control Hub is healthy.

~5 Seconds \

=
m
-
<
=
L

Once you have powered on your Control Hub follow through the process for connection to either a Driver
Hub or a Driver Station phone.

Driver Hub

/\ This section assumes you have gone through the process of setting up your Driver
Hub. If this is not the case please go to Getting Started with the Driver Hub and go
through the process of bringing up your Driver Hub.

10:04AM @

Open the Driver Station application from the HOME
Screen.

Software Mana... | FTC Driver Stati...

In the Driver Station application, click the three dots
in the upper right corner to open the drop down
menu.

In the drop down menu select Settings.

Select, “Pair with Robot Controller”.

Select Wi-Fi Settings.

Note: In initial bring up for the Driver Hub you are
asked to connect to a Wi-Fi network with internet,
which is why this Driver Hub is already connected
to a network. However, now the focus is on
connecting to the Control Hub.

Select the name of the Wi-Fi network generated by
your Control Hub. The default SSID name starts

with either “FIRST-* or “FTC-“. In this example we
want to choose our REV-DEMO Control Hub.

Enter the password to the Wi-Fi network in the
password field. This defaults to “password”. Press
CONNECT.

After pressing connect, press the back arrow at the
bottom of the display until you return to the main
driver station screen.

- Network: REV-Guest
IN\/ Robot Connected Ping: No Heartbeat-ch 149 sl user1

DS: 100%

()
Practice Timer

Sta d
2:30 O :

no valt

v Select Op Mode v
~ Autoromous | TeleOp -

-, Network: REV-Guest
/w Robot Connected Ping: No Heartbeat-ch 149 sl user1

Settings
Practice Timer

230 O - i Restart Robot
Configure Rot
v Select Op Mode v

~ Autonomous | TeleOp -
Program & Mz
Self Inspect

About

Exit

DRIVER STATION SETTINGS

Pair with Robot Controller
Change the robot controller this driver station is paired with

Pairing Method
Control Hub

Driver Station Name
Change the name of the driver station

Driver Station Color Scheme
Change the color scheme of the driver station. Will take effect on next app launch

Driver Station Layout
Change the Driver Station UI layout. Will take effect on next app launch

< 0 < ° []

Wireless access point pairing is used to pair a driver station with a robot ¢
running on a Control Hub (use WifiDirect to pair with other robot controller

Each Control Hub robot controller hosts its own Wifi network named with
name of the robot controller (default password: “password"). Click the butt

below to use the system Wifi Settings of your driver station to select the n
of the robot controller you want to pair with

Current Robot Controller:

REV-Guest

Wifi Settings

¢ 0 < ° [

10:07 AM @

& Wi-Fi

[~ REV-Guest
Connected

9§ FTCBMAO

O MHS-Guest

10:07AM @

REV-DEMO

Password

D Show password

Advanced options

CANCEL

- Network: REV-DEMO
&> Robot Connected Ping: 4ms- ch 157 alll e+

DS: 100% = 13

Practice Timer

2:30 ° helloRobotTest Status : Robot is stopped

After a couple of seconds, the Driver Station page)
will indicate the network name, a ping time, and Y smlitomr- W
battery voltage.

Your Driver Hub is now paired with your Control Hub!

Other Supported Android Device

/\ This section assumes you have gone through the process of setting up your Driver
Station Android Device. If this is not the case please go to Configuring Your Android

Device and go through the process of configuring an Android Device to act as the
Driver Station.

Power on your Android Device by holding down the
power button.

Open the Driver Station application from the HOME
Screen.

On the Driver Station page, open the menu from the
top right corner, then select Settings.

Select, Pairing Method.

Moto E (4)_3b31

3.0%

Settings
Restart Robot
Configure Robot
Program & Manag:
Self Inspect
About

Exit

Select, Control Hub.

Select, Pair with Robot Controller.

DRIVER STATION SETTINGS
Pair with Robot Controller

Change the robot controller this driver station is
paired with

Pairing Method
Wifi Direct

Driver Station Name
Change the name of the driver station

Driver Station Color Scheme

Change the color scheme of the driver station.

o e e i T S S S el L e s
NULE. LS apgp win iesiai L il uic Cuidr STNSimic is

Pairing Method

Wifi Direct O

Control Hub @®

Cancel

Select Wifi Settings.

Select the name of the Wifi network generated by
your Control Hub. The default SSID name starts
with either “FIRST-* or “FTC-".

DRIVER STATION SETTINGS

Pair with Robot Controller

Change the robot controller this driver station is
paired with

Pairing Method
Control Hub

Driver Station Name
Change the name of the driver station

Wireless access point pairing is used tc
pair a driver station with a robot contro
running on a Control Hub (use WifiDirec
pair with other robot controllers).

Each Control Hub robot controller host:
own Wifi network named with the nam
of the robot controller (default passwor
"‘password"). Click the button below to |
the system Wifi Settings of your driver
station to select the network of the rob
controller you want to pair with.

Current Robot Controller:

None

Wifl Settings

Enter the password to the Wifi network in the
password field. This defaults to “password”. Press
CONNECT.

After pressing connect, press the back arrow at the
bottom of the display until you return to the main
driver station screen.

After a couple of seconds, the Driver Station page
will indicate the network name, a ping time, and
battery voltage.

FIRST-aE1y

Password

|:] Show password

Advanced options v

CANCEL

1 2 3 45 6 7 8 9
qwe T T tyuio

a s df gh j k

& z x ¢ v b n m

Moto E (4)_3b31

3.0% User 1 User2

Your Driver Station is now paired with your Control Hub!

Wiring Diagram

Before configuring your Control Hub, devices must be connected to the Control Hub. Below is a sample
wiring diagram to show a sample of actuators and sensors usable with the Control Hub.

Slim Battery*
REV-31-1302
Switch Cable and Bracket Color Sensor V3
REV-31-1387 REV-31-1557
-
le o o Control Hub
REV-31-1595 2M Distance Sensor
. REV-31-1505
]
.-
’j .- ”E frovithereod
2 REY REV-31-1425
Core Hex Motor* oo IsyFmst

REV-41-1300

Magnetic Limit Switch

Core Hex Motor* REV-31-1462

REV-41-1300 36” PWM Cable*

REV-11-1130

UltraPlanetary Gearbox Kit

* Smart Robot Servo*
and A e 1a00 REV-41-1097

—— 1=
NYYY

Potentiometer
REV-31-1155

UltraPlanetary Gearbox Kit
and HD Hex Motor*
REV-41-1600

For more information on the connectors and cables used with the Control Hub see the links below:

XT-30 - Power Cable

JST VH - Motor Power

JST PH - Sensors and RS485

Next Steps

Being able to connect to the Robot Controller Console, connect a Driver Station to a Control Hub, and the
basics of connecting Control Hub to different actuators and sensors is just the start. This section focuses on
the next steps for using the REV Control System, including getting started with programming and best
practices for managing the Control Hub and Slim Batteries.

Getting Started with Programming

Now that the Control Hub is setup, it is ready to start programming to control a robot! The Hello Robot
programming guide walks through the necessary steps for getting started with programming. The guide has
suggestions to choose the right programming tool, configuring your robot, and the basics of programming.

In order for the Control Hub to properly communicate with hardware components, you must perform a two
part process known as hardware mapping. One of the most important, and commonly forgotten steps, when
getting started programming is the creation of the configuration file, which is the first part of the hardware
mapping process. A properly created configuration file, defines each hardware component with a unique
name and a port type and number. After attaching hardware components to the Hub, use the Driver Station
application to create a configuration, before beginning to program.

- Network: REpaR
/w Robot Connected Ping: 3ms -

Settings

DS: 100%

==
Practice Timer Restart Robot
helloRobotTest

2:30 O

Status : Robot is stq

Configure Robot

Program & Manage
Self Inspect
About

Exit

@ For more information on the important of hardware mapping and how to configure your robot
please see the Hello Robot - Configuration page.

Adding a Expansion Hub

Depending on the application more motor, sensor, or servo ports maybe needed. If your robot needs more
motors adding an Expansion Hub might be necessary. Adding an Expansion Hub adds the same amount of
hardware ports as one Control Hub (an additional four motor ports, six servo ports, and all the sensor ports)
to the system.

@ For more information on how to add a secondary Expansion Hub please visit our Adding an
Expansion Hub page.

Managing the Control Hub

The Control Hub and Expansion Hub are field upgradable devices. When new software is released with
new features, bug fixes, and season specific changes users can update the device themselves. Checking
for software updates at the start of September and then about every 6-8 weeks is recommended. To check
for software updates you can use the REV Hardware Client or check the Managing the Control System
section of the documentation.

@ Information on updating various pieces of software for the Control Hub, Expansion Hub, and
Driver Hub can be found in the Managing the Control System section.

Slim Battery Best Practices

To maintain and care for your battery, reference the general best practices on the 12V Slim Battery (REV-31-
1302) product page or the information below. This includes how to properly store, charge, and care for your
battery on the long term.

All rechargeable batteries have a finite lifespan. Factors that affect lifespan include the number of
discharge/charge cycles and the average loading of the battery. The following best practices can help
maximize the lifespan of your battery:

e Charge rate
Minimum: 1.5A

e Maximum: 3.0A
e Recommended: 1.8A or 2.0A

e Do not overcharge

e Disconnect the battery from the charger once itindicates a full charge.

Typical charge time does not exceed 2 hours.

https://www.revrobotics.com/rev-31-1302/

Do iy chatas R PRGN HdasHd R ARTAEr AR RN minutes will not significantly

discharge the battery.

e Minimum no-load voltage: 9.0V

e Discharging the battery past 9.0V can reduce the lifespan of the battery and can permanently
damage the cells.

e Periodic dips below 9.0V when under load is expected and OK.

e For example, don't forget to unplug your battery after you are finished running the robot and don't
run your robot until it completely stops responding!

e Temperature

e |etthe battery cool before and after charging.

e The battery may feel warm after heavy loading or after charging. This is normal.

Getting Started with Driver Hub

After receiving the Driver Hub itis advised to unbox the device, plug the Driver Hub in to charge over USB-
C, and power on the Driver Hub. Below is the initial bring up process of the Driver Hub.

Required Materials

e Driver Hub (REV-31-1596)
e USB-Ato USB-C Cable

e USB-A Wall Charger

https://www.revrobotics.com/rev-31-1596/
https://www.youtube.com/watch?v=RPcZOzUOZHg

Battery Installation

To install the battery place it with the REV Logo out and the -/+ located near the contacts for the device. Add
on the rear door and screw in using the included M3 hardware.

NEV

ROBOTICS

@ Before continuing to set up the Driver Hub allow the battery to charge over USB-C or keep the
Driver Hub plugged into a power source during set up.

Setting up the Driver Hub

When the Driver Hub is first powered up, or a factory reset is performed, an initial set up process is needed.
Start by selecting next on the main screen to continue.

NEV

ROBOTICS

NEAT 2

Select a local Wi-Fi network that has access to the internet, enter in the password for that network if
required, and select next.

< B100%

Please connect to Wi-Fi to check for updates and sync the system clock

FTC-BMAO

MHS-Guest

REV-Guest

¥

Time zone and date of the device are set by the local Wi-Fi network. Confirm these settings are correct
before proceeding by the Next button.

9:53 AM ¥ 0100%
) Date & time

Set your time zone and adjust current date and time if needed

Central Time
GMT-5:00

Current date
5/12/21

Current time
9:53 AM

Initial set up is complete! Select Finish to operate the Driver Hub.

* 0100%

Initial Update

After setting up the Driver Hub, the Software Manager application will open. Select the Update All button to
start the download and installation of software updates for the Driver Hub.

@ The updates can take several minutes to complete. Make sure the Driver Hub is charged or plug
in the Driver Hub during the updating process.

9:54 AM @ < 0100%

Software Manager - Available Updates Q O :

UPDATE ALL

- Driver Hub OS

m Software Manager

@ Now the Driver Hub is ready to connect to a Control Hub!

Navigating the Driver Station Application

Once the Driver Hub is connected to a Control Hub, you will have access to the entire Driver Station
Application interface. Like any application, understanding the major components that make up the Driver
Station Application interface, will maximize your ability to utilize the application efficiently. Consider the
following components:

- Network: FTC-BMAQ ;M
/w Robot Connected 9 Ping: 3ms- ch 48 alll User1 User2 6
DS: 66% 12.83V
| [TH} (1272v)
Practice Timer 8
2:30 ° Demo Status : Robot is stopped @

Limit Switch 1: True

v HelloRobot v

- Network: FTC-BMAQ -

Iw Robot Connected Ping: 3ms - ch 48 -||I| User \@
DS: 66% 12.83V
| [0} @ (1272v)

Practice Timer
2:30 ° Demo Status : Robot is stopped

v helect Op Mode, v
lonomous | Tele!

Initialize, start, and stop Only available when a progran
programs has been selected.

Displays telemetry outputs.

10

Tips and Tricks

Network: FTC-BMAO

Ping: 3ms - ch 48 allloes -

Telemetry display

Active configuration

Network information

Gamepad connections.

Autonomous drop down menu

Teleop drop down menu

System power display

Settings drop down menu

Practice Timer

Displays any system warnings
and error codes

Displays which configuration fi
is currently active.

If this section says <no config
file> you will need to activate ¢
create a configuration file.

Displays Control Hub SSID
Name, signal strength, and pin
time.

See Connecting Gamepads fol
more information.

Drop down menu that displays
all autonomous programs save
on the Control Hub.

Drop down menu that displays
all teleop programs saved on tl
Control Hub.

Displays the amount of battery
voltage powering the robot,
when connected to a Control
Hub.

Access settings, configure the
robot, restart the robot, check
see if your system meets
competition inspection
requirements and more.

A built in timer that can be usel
to to practice for different
portions of a match.

Network: FTC-BMAO = ..
ping:ams-chas lll userd
(8]

(

If you tap on area 4, it will switch to displaying the link speed and signal strength. It will go back to showing
the signal strength and ping time if you tap it again.

The smaller number in area 8 is the lowest voltage that the Driver Station has observed from the Robot
Controller. If you tap area 8, the lowest voltage will be reset to the current voltage.

Connecting Gamepads

The Driver Station Application allows for the connection of two gamepads. When working with the Driver
Hub these gamepads can be plugged into any of the three USB 2.0 ports. Once the gamepads are plugged
in, you will need to initialize them. For the following example we will use PS4 controllers, such as the Etpark
Wired Controller for PS4 (REV-39-1865).

To initialize the gamepad that will act as User 1 (gamepad1, in code) press the options button and the
X button on the gamepad at the same time. To initialize User 2 (gamepad2, in code) press the options
button and the 0 button at the same time.

@ For the Logitech F310 Gaming Controller and Xbox 360 Controller for Windows, press start and
A at the same time to initialize User 1 and start and B at the same time to initialize User 2.

Adding More Motors

https://www.revrobotics.com/rev-39-1865/

The Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) can each drive up to four DC brushed
motors. As mechanisms are added to the robot the number of motor ports may not be sufficient. There are
two ways to add more motors to the Control System, either the SPARKmini Motor Controller (REV-31-1230)
or adding an Expansion Hub. The Following two rules give a general idea of when to choose one method
over another:

e If one or two motors are needed, consider using the SPARKmini Motor Controller.

¢ |f three to four additional motors are needed, consider adding an Expansion Hub.

For additional information on how to use a SPARKmini or how to add an Expansion Hub, visit the linked
pages!

SPARKmMmIini Motor Controller

Adding an Expansion Hub

SPARKmini Motor Controller

The SPARKmini Motor Controller (REV-31-1230) is an inexpensive in-line brushed DC motor controller
designed to give FIRST® Tech Challenge teams more bang for their buck. It offers the same performance
characteristics as the REV Control Hub (REV-31-1595) or Expansion Hub (REV-31-1153) motor ports in a
small 60mm x 22mm footprint. Now FTC teams can add a SPARKmini Motor Controller to utilize more than
four DC motors from a single Hub in a space-efficient package.

Power and Motor Connections

The SPARKmini has three integrated wires with connectors dedicated to power, control, and the motor; one
XT30 connector for power, one 3-wire servo-PWM connector for control, and one JST-VH connector for the
motor. The figure below shows each of these connections.

Power
XTSO 3 REV rosoTics)) - Motor
: SPARK: JST VH
Control
Servo/PWM

Connect the power wire to a free XT30 port on the REV Control Hub , REV Expansion Hub (REV-31-1153),
or through an XT30 Power Distribution Block (REV-31-1293) that is connected to a free Control/Expansion

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1230/
https://www.revrobotics.com/rev-31-1230/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Hub XT30 port. Connect the control wire to an open servo port on the hub and the motor wire to a JST-VH
port on a motor, like the REV HD Hex Motor (REV-41-1301) or the REV Core Hex Motor (REV-41-1300).

/\ DO NOT reverse polarity on the power input connections. The SPARKmini does not contain
reverse polarity protection. This can permanently damage the SPARKmini and will void the
warranty.

/\ DO NOT swap the motor and power connections. This can result in uncontrolled motor operation
and can permanently damage the SPARKmini, voiding the warranty.

Servo-PWM Input

A motor’s speed is controlled by varying the voltage that is applied to it. The SPARKmini’s output voltage
can be controlled by sending it an extended-range servo-PWM pulse. The extended 500us to 2500us servo-
pulse corresponds to full-reverse and full-forward rotation with 1500us as the neutral position (no rotation).
The pulses are proportionally related to the motor output duty cycle, therefore variable speed can be
achieved with pulses in between the extremes. The following table describes the pulse ranges in more
detail.

Table - Control Signal Pulse Ranges

Pulse Width (p

in ps)

Full Reverse Prop. Reverse Neutral Prop. Forward Full Forward
p <500 500 <p <1490 1490 < p <1510 1510 <p <2500 2500<p

Zero-Power Behavior

When the SPARKmini is receiving a neutral command it will not provide any power to the attached motor.
There are two options for how the SPARKmini handles this zero-power state:

Brake - Motor terminals are shorted to each other to dissipate electrical energy, effectively braking the motor.
Coast - Motor terminals are disconnected, allowing the motor to spin down at its own rate.

The zero-power behavior can be selected via a switch located towards the center of the SPARKmini
housing, shown in Figure 2. Each mode can be selected by sliding the switch to either the Brake (B) or
Coast (C) positions.

Coast Brake

N/

https://www.revrobotics.com/rev-41-1301/
https://www.revrobotics.com/rev-41-1300/

The SPARKmini will indicate whether itis in Brake or Coast mode via the Status LED, located in the center
of the housing, whenever it is outputting zero-power. Solid or flashing blue indicates Brake Mode while solid
or flashing yellow indicates Coast Mode. See the LED Status Codes section for more details.

LED Status Codes

LED Status Code
Time Scale 1 second | 1 second
State Normal Operation
Brak
No Signal diLS
Coast
Full Forward I

Proportional Forwardl - - - - - - -

Neutral

Coast

Proportional Reverse

Full Revers e

Specifications

Parameter Min Typ Max Unit
Supply voltage

PPY g 6.0 12 20 \Y,
range (VIN)
Supply voltage
absolute - - 25 \Y,
maximum
Continuous

- - 15 A

output current

Peak output
current

Output voltage -VIN - + VIN Vv
range

Output frequency - 10 - kHz
Input pulse width

500 - 2500 ps
range
Input frequency 16 50 200 Hz
Input timeout - 65.5 - ms
Input deadband - +10 - Us
Input low-level

-0.3 - 0.8 V
voltage
Input high-level

2.0 5.0 5.3 V
voltage
Weight - 0.87 - 0z
Dimensions

- 60x22x12 - mm

(excluding wires)

Adding an Expansion Hub

If you want to use more than 4 motors or 6 servos, you can add an Expansion Hub to your robot. An
Expansion Hub (REV-31-1153) can be added to a Control Hub (REV-31-1595) or another Expansion Hub.
The Expansion Hub has all of the same ports as the Control Hub but without the wireless capability.

Control Hub vs Expansion Hub in FIRST

FIRST Tech Challenge FIRST Global

FIRST Tech Challenge teams may use one (1) FIRST Global teams must use one (1) Control Hu
Control Hub and may add one (1) Expansion Hub and may add one (1) Expansion Hub to their robo
starting in the 2020-2021 season. Read the official Read the official FIRST Global manual for

FTC Game Manuals for complete game rules. complete game rules.

@ If you are using a configuration file from a 5.5 or earlier version of the Robot Controller
Application, you will need to create a new configuration file.

Adding an Expansion Hub to your Robot

https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1595/

Siep image

Control Hub

- REV R =
HUB :
Use the XT Extension Cable to connect power ;

between the Control Hub and the Expansion Hub.

Use a 3-pin JST PH cable to connect the RS485
port on the Control Hub to the Expansion Hub.

XT Extension Cable

Expansion Hub

Communcation Cable

a. REV LG =
HUB

Moto E REV RC

[} s4.0% User1 User2

Settings

i Restart Robot

<No Config Set>
Configure Robot

Program & Manage
Self Inspect
About

Exit

Status : Robot is stopped

From the Driver Station choose “Configure Robot”

Active Configuration: <No Config Set>

New

Available configurations: o

Configure from Template 0

Select “New” in the top left hand corner. < O O

Active Configuration: (unsaved) <No Config Set>

Cancel @ Scan i}
Press the 'Save' button to persistently save the current
configuration
Press the 'Scan’ button to rescan for attached devices
USB Devices in configuration: 0

Control Hub Portal

(embedded)

Select “Control Hub Portal”
< O O

Note: This will show an Expansion Hub Portal if

using an Android Device as a Robot Controller

Now you have two Hubs to choose from. Either the
Control Hub or the Expansion Hub.

“Expansion Hub 2" is the connected Expansion
Hub that is communicating over RS485.

Configure and program as necessary. Please see
the Configuration section of for an overview of
configuration.

Note: If using an Android Device as a Robot
Controller there will be two Expansion Hubs
located here. The Expansion Hub Address may
need to change so they do not conflict.

Active Configuration: (unsaved) <No Config Set>

Done @ Cancel

. Control Hub Portal
(embedded)

Expansion Hub 2

Control Hub

Troubleshooting the Control
System

General Troubleshooting

One of the key aspects of troubleshooting is understanding the most common issues that occur in a system.
Once those problems, and their indicators, are defined a flow has to be created. For example, a check
engine lightin a car indicates any number of issues. When a cars check engine light comes on, a mechanic
pulls the codes from the car to narrow down the issue to a specific part of the engine. Even if the code leads
to a specific part of the engine, like the transmission, it is not always indicative of the exact problem.
However, there is a process flow. Each step narrows down the problem to a potential solution.
Troubleshooting the REV Control system is no different!

@ The status LED is the REV Control System equivalent to the check engine light mentioned in the
example. Visit the LED Blink Code section to understand what each code is and what it indicates.

Many issues can be solved by systematic troubleshooting without needing to contact REV Support. Take a
look at the troubleshooting tips below for help in determining the cause of the issue you are seeing. Should
you need to contact us, describing the steps you've taken in detail will help us get you up and running
quickly. The section is divided into general best practices, Control Hub (REV-31-1595) troubleshooting and
Expansion Hub (REV-31-1153) troubleshooting.

General Best Practices

Before diving into common troubleshooting paths its important to understand the general guidelines, or best
practices, for Control System Health.

e Charge the Battery - While a charged battery and phone are crucial to a healthy control system in
general; itis also helpful to ensure batteries and phones are charged before a match.

e Update - The applications, firmware, and operating system have periodic updates to improve the
control system. Keeping the control system up to date ensures the best performance!

¢ |solate the Issue - This is key to effective troubleshooting. Many issues can show the same symptom,
so eliminating failure points one at a time is critical to finding the root cause.

/\ DO NOT plug a battery charger into either the Control Hub or Expansion Hub. It will damage the
Hub and cause eventual device failure

Maintaining and taking care of the 12V Slim Battery is also important for troubleshooting purposes. All

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

rechargeable batteries have a finite lifespan however following the best practices for the 12V Slim Battery
can extend the lifespan of the battery.

Control Hub Troubleshooting

The following questions consider common indicators of issues seen in the Control Hub. Think about the
potential indicators your Hub is currently exhibiting and consider the following questions:

Is the Driver Station device unable to connect to to

- Yes
the Control Hub Wi-Fi?
Is the Driver Station connected to the Wi-Fi but not
showing a ping or any other signs of Yes
communication?
Has the Status LED been solid blue for longer than Yes

30 seconds (after start up)?

Can't Connect the Control Hub to a Computer

Can't Connect the
Control Hub to a
Computer

Please jump to the
troubleshooting guide for
"Status LED is Solid Blue
for More than 30
Seconds"

Status LED
output?

Blue—>|

Green

Network is visible

Try changing the WiFi Band:

1. Power on the Control Hub

2. Once the Control Hub has fully
booted (LED is solid green), press
and hold the button on the front of
the Control Hub.

3. Release button when the Control
Hub LED MAGENTA or YELLOW.

Is the
Control Hub
SSID
visible?

No—>|

Network is still not visible
Yes

Please follow through the following WiFi
reset procedure:

1. Press and hold the button on the
front of the Control Hub

2. While pressing the button, power Use the REV

Able to sign into
the Cantral Hith?

No—>|

on the Control Hub

2 Ralaaca hiittnn whan tha Cantrnl

——Network Inaccessible»‘

Hardware Client to
Send Diaannstic

w.lLIvUoL puLUEE Y Puie wuniuus — i g

Hub LED begins to flash a Data to REV
multitude of colors. When the A
Control Hub flashes Blue then
Green it has completed the reset
and is ready to connect.

Yes

Signed into network——

Make sure you are entering the correct IP
Able to address:
connect to the .
Robot No—>{ For Expansion Hubs and Robot Controller | pohot Control Console Inaccessible—
Controller Phones: 192.168.49:8080
Console?
For Control Hubs: 192.168.43.1:8080

Yes
l Accessed Robot Control Console

Congrats! The
Control Hub is
connected to the
laptop

A

@ The Wi-Fi reset will down grade the Wi-Fi connection to 2.4GHz. If you have an android device
with 5GHz you may want to switch the Wi-Fi Band in order to run on 5GHz. Check out the
Updating Wi-Fi Settings Section to learn more about making this switch.

External factors, such as local Wi-Fi environment, play a part in the ability to establish or maintain a
connection between a Control Hub and a computer. Like all aspects of of troubleshooting its important to
isolate an issue by asking questions and discovering the answers! As you work on troubleshooting consider

the following questions:

e What is your local Wi-Fi environment like?
e |ocal Wi-Fi environment effects the consistency of a connection to the Control Hub. Use a Wi-Fi
analyzer to check the local environment for channels that are cluttered with Wi-Fi networks. Change
the Control Hubs Wi-Fi channel to a channel with the least amount of overlap with other networks.

e Are you connected to another Wi-Fi network?
e The Control Hub produces a non internet Wi-Fi connection. Settings on the individual computer may
cause the device to jump to a local, remembered network that produces an internet connection.

e Are you in aschool or a place of business?
¢ |n addition to the amount of local networks in an environment its important to understand what those
local networks are capable of. For instance, some school districts have security measures in place
that block unauthorized Wi-Fi access points. Talk to your local Wi-Fi adminstrator to find out what

you need to get the Control Hub as an approved network.

@ If the Control Hub SSID is not shown in the list of available Wi-Fi networks, try manually entering
the Control Hub SSID to see if that allows you to connect.

https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer&hl=en

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

@ Need help getting the Log Files to send to REV Support? See Downloading Log File for more
information.

Driver Station Won't Connect

/\ Information in this flowchart is for the initial bring up of connecting the Control Hub with a Driver
Station. For issues with intermittent connection or periodic connection drops please check out the
information below this flowchart.

Driver Station Won't
Connect

Please jump to the
troubleshooting guide for
Blue—>»{ "Status LED is Solid Blue
for More than 30
Seconds"

Status LED
output?

Green

Network is visible

Try changing the WiFi Band:

1. Power on the Control Hub

2. Once the Control Hub has fully

No—> booted (LED is solid green), press
and hold the button on the front of
the Control Hub.

3. Release button when the Control
Hub LED MAGENTA or YELLOW.

Is the
Control Hub
SSID
visible?

Network is still not visible

Yes

Please follow through the following WiFi
reset procedure:

1. Press and hold the button on the
front of the Control Hub
2. While pressing the button, power

Check out the section

Able to sign into on the Control Hub ;

the Control Hub? No—> 3. Release button when the Control Network Inaccessible—> gﬁgogvgggrso;id tips!
Hub LED begins to flash a '
multitude of colors. When the A

Control Hub flashes Blue then
Green it has completed the reset
and is ready to connect.

Signed into network——

Has a
secondary DS
been connected
to the hub?

Does the DS
connect if you
reset the App?

Pairing

Driver Station

Yes Yes Unable to Connect
Unable to Connect l i
i Select a configuration The secondary Driver Station
Ch?r?gc?tth% paltrlnlgH) and attempt to run an is likely affecting the
method to Control Rub. Op Mode. connection between the Hub
and the primary Driver Station.

i Try the following steps:

Able to Connect Able to Connect—]
o Power off the 2nd DS

o Power cycle the Hub

@ The Wi-Fi reset will down grade the Wi-Fi connection to 2.4GHz. If you have an android device
with 5GHz you may want to switch the Wi-Fi band in order to run on 5GHz. Check out the
Updating Wi-Fi Settings Section to learn more about making this switch.

External factors, such as local Wi-Fi environment, play a part in the ability to establish or maintain a
connection between a Control Hub and a Driver Station device. Like all aspects of of troubleshooting its
important to isolate an issue by asking questions and discovering the answers! As you work on
troubleshooting consider the following questions:

Is your system operating on a 2.4 GHz band or 5GHz band?

e REV recommends, if you have a dual band Driver Station device, that you operate on the 5GHz Wi-
Fi band. Check out the Updating Wi-Fi Settings section to learn more about making this switch.

What is your local Wi-Fi environment like?

e |ocal Wi-Fi environment effects the consistency of a connection to the Control Hub. Use a Wi-Fi
analyzer to check the local environment for channels that are cluttered with Wi-Fi networks. Change
the Control Hubs Wi-Fi channel to a channel with the least amount of overlap with other networks.

Are you in a school or a place of business?

e In addition to the amount of local networks in an environment its important to understand what those
local networks are capable of. For instance, some school districts have security measures in place
that block unauthorized Wi-Fi access points. Talk to your local Wi-Fi administrator to find out what
you need to get the Control Hub as an approved network.

Does the the Driver Station connect to the Control Hub until a mechanism is run?

e Certain mechanisms draw enough power from the Control Hub to put a strain on the battery. If you
notice a drop in displayed voltage when you start a code, or when a particular mechanism is run,
this may be indicative of a brown out condition. Other indicators include:

e The Driver Station throwing errors about power to the system
e The Driver Station making a disconnect sound
e The voltage on the Driver Station showing 9 volts or lower when running code

e Motors running at lower speeds then what they have been set to run

https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer&hl=en

To remedy this issue check out our instructions on proper battery care.

@ If the Control Hub SSID is not shown in the list of available Wi-Fi networks, try manually entering
the Control Hub SSID on the Driver Station to see if that allows you to connect.

If you are still experiencing connection issues, once you have gone through the flowchart and worked on
addressing the potential root of connection issues describe in the list above, start looking for patterns in the
behavior. How often does this behavior appear? Are there certain things that happen around the same time
the disconnects happen? The following list provides some ideas on what sort of patterns you might see:

e The Control Hub connects fine when a team member takes it home but doesn't seem to like to connect
at school.

e The Control Hub connects fine until you start driving the robot around.

(1) Justremember correlation does not equal causation of an event but is useful data to further
troubleshooting

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

@ Need help getting the Log Files to send to REV Support? See Downloading Log File for more
information.

Status LED is Solid Blue for Longer than 30 Seconds

@ This section is for troubleshooting a Control Hub. If you have an Expansion Hub please refer to
the Expansion Hub Troubleshooting guide for help solving Expansion Hub related issues.

Status LED is Solid Blue
for longer than 30
seconds

When dealing with the Control
Hub make sure to give the it
time to boot up before giving
commands. [€—No

If the problem occurs frequently
please contact REV Support.

Push a re-installation of
the current version of
Hub Firmware onto the
Control Hub.

Is the Control
Hub Software
Stack up to
date?

Does fault
persist through
power cycle?

Connect to Driver
[—Status LED Green Station and attempt to
run configuration.

T
Status LED Blue

Status L:ED Blue No

Update the Robot
Controller Application,
Control Hub O.S., and
the Hub Firmware. Give
the Control Hub time to
reboot.

Are you using
Android Studio?

Send Di ic Data
N o REV.

Status LED Green Yes

Connect to Driver Try rebuilding the
Station and attempt to Robot Controller APK Status LED Greeen
run configuration. (or build your code).

Status ITED Blue

https://www.revrobotics.com/rev-31-1302/

Are you using the
latest Robot
Controller APK?

Create a new Android -
» Studio projectwith the | g‘oarlw_necttzngger "
No most recent Robot Status LED Green ion and attempt to
Controller APK release. run configuration.

Status LED Blue™=~--"~ :

Please check the Control Hub
permissions:

« Plug the Control Hub

Are you using
External Libraries? Yes—> into a monitor via HOMI
« Plug a mouse into the

Status LED Green

Control Hub USB port
« Check for Prompts

No
Status LED Blue

Send Diagnostic Data
to REV.

The status LED on the Control Hub is similar to a check engine light on a car. A solid blue status LED
indicates the Robot Controller is not communicating to the 1/0 of the Control Hub, but not what the root
cause is. Updating the Control Hub to the latest version of all the software is a first step to resolving this
issue, listed below are two ways to update.

Using the REV Hardware Client

The REV Hardware Client is software designed to make managing REV devices easier for the user. This
Client automatically detects connected device(s), downloads the latest software for those device(s), and
allows for seamless updating of the device(s). Using the REV Hardware Client allows you to perform any
required updates that may be needed to recover your Control Hub. The Hardware Client can also be used to
Send Diagnostic Data to REV.

@ If you do not have a Windows 10 or higher PC, see Downloading Log File for more options on
getting your diagnostic data to REV, and Updating Firmware, Updating Operating System, and
Updating Robot Controller Application for steps to update the software.

Using Android Studio

@ The Control Hub must run version 5.0 or higher of the Robot Controller Application. If using
Android Studio, make sure you are using a 5.0 or higher project.

If you use Android Studio for coding you will need to update your Robot Controller application by creating a
new Android Studio project with the most recent version of the Robot Controller APK. Information on this
process can be found in FTC Wiki Android Studio Tutorial.

Still Need Assistance?

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

®

https://github.com/FIRST-Tech-Challenge/FtcRobotController/wiki/Downloading-the-Android-Studio-Project-Folder

Need help getting the Log Files to send to REV Support? See Downloading Log File for more
information.

Driver Hub Troubleshooting

@ In this troubleshooting guide we will use specific language to describe different ways of power
cycling the Driver Hub.

Turn OffIPower Off - Long press (1-2 seconds) the power button so that a drop down menu
appears, then tap "power off" on the screen

Hard Reboot - Hold power button for at least 10 seconds and do not touch anything on the
screen. Once the green LED light turns off and the screen goes dark, release the power button,
and the hard reboot is complete.

Most Common Issues

Updating the OS

Updating the Driver Hub Operating System

When Updating your Driver Hub to the newest operating system, version 1.2.0, please be sure to
follow these steps:

e |nstall the update on a fully charged Driver Hub. If the update fails, please plug in your hub
and try again after fully charging.

e Don'ttouch the screen when a loading bar is displayed on the Driver Hub during the update
process. If you touch the screen you will be directed to a menu after installation completes.
Do nottouch the screen and hard reboot your Driver Hub.

e Once you have updated your hub, please verify that your device is showing the current
version 1.2.0, in the REV Hardware Client.

Unexpected Shut Down

Driver Hub Intermittent Battery Power Loss

Some Driver Hubs have a slight amount of extra space inside the battery bay that may cause a
loss of power or intermittent battery charging. We have two quick fix options we are suggesting
as solutions. The firstis to use a small piece of folded paper or a few layers of tape to provide a
more secure connection between the contacts. The second is a piece of foam tape we can ship

to teams which will accomplish the same goal. Suggested installation steps are highlighted
below:

Option 1: Tape Quick Fix

Tape (painters tape or masking tape) is placed on the thin edge above the battery on the side opposite the contacts

Any tape or paper needs to sitinside the battery bay door edge

Option 2: Foam Tape

1. Cut foam tape into small pieces, approximately 2 inches orless 2. Foam tape will be applied inside the battery case, opposite battery contacts
long| The foam tape recommended is approximately 1/4 inch or and below the ridge that the battery door sits within.
less wide and 1/16 inch or less thick

_—

3. Stick foam strip in the middle, both side to side and top to bottom, of 4. Press foam strip down firmly to make sure it sticks.
the vertical surface opposite the battery contact switch.

5.1 Insert battery by inserting top of battery 5.2 Continue to push the battery down until itis 6. Done
towards foam, and gently squeezing battery flush in the case.
towards foam with thumb until battery can
easily drop into battery case.

Common Charging/Power Issue Symptoms

The symptoms listed below can have a number of causes.
e Driver Hub only turns on when plugged into a charger
e Battery is discharging rapidly
e Battery reports low-battery at levels significantly above 0% and shuts off
e Device will not boot due to low battery even when Driver Hub is charged
e Driver Hub is on charger but will not turn on

e Device stopped charging and will not continue to charge

To properly troubleshoot, please start with the steps below
1. Check the orientation of the battery - see Battery Installation

2. Ensure you are using the charger that came with the Driver Hub - the charger must
specifically be a non-PD charger for these troubleshooting steps, and using the charger that
was shipped with the Driver Hub is the simplest way to confirm that.

Unplugging and replugging in the charger from the Driver Hub may resolve some symptoms
Ensure your Driver Hub is fully updated

Perform a Battery Recalibration

2 T

If possible, swap the battery with a known good battery to see if the issue follows the battery
or follows the Driver Hub unit

Known Software Issues

The following are known issues that we are working to resolve via a future software update:
Waking Wi-Fi from a Sleep State

There is a known issue with the Wi-Fi driver not restarting correctly when the Driver Hub is
woken from a "sleep" state. The current resolution is to perform a hard reboot on the device
when the Driver Hub is having issues connecting to a Wi-Fi network.

You can make sure this issue doesn't happen before a match by leaving the screen on, and the
Driver Station app open. This will prevent the Driver Hub from going to sleep.

Unlock Times are Inconsistent
Unlock can take anywhere from 2-10 seconds to occur, this is normal behavior.
Device Froze or Crashed while in Sleep Mode

Perform a hard reboot to wake up the device. This includes some cases where status LED B is
solid green, indicating that the device is on, but the screen will not wake.

Inconsistent Battery Drain

Inconsistent battery draining while in a "sleep" state is a known issue. Devices may also shut off

while in a "sleep" state due to this. Future software updates are in the works to resolve this.

Additional Troubleshooting

"App Not Installed" Error

On the homepage the FTC Driver Station app can report an "app not installed" error after updating the OS
and the app. This can also cause the Driver Hub to not allow you to open the FTC Driver Station app. To fix
this do the following:

1. Remove the Driver Station app icon on the home page by clicking and dragging to the X icon

2. Drag the new icon from the app drawer on the home screen. The app drawer is accessed by swiping up
on the home screen of the device.

Android Permissions Lock Out

If the FTC Driver Station app is locked out due to android permissions, a factory reset of the Driver Hub
should resolve this issue. Please power on the device, then follow the steps below to perform a factory reset:

1. Tap the "Setting" icon
2. Tap the "System" icon
3. Tap "reset options”

4. Tap "erase all data" (factory reset)

Battery Installation

To install the battery, place it with the REV Logo facing out and the -/+ located near the contacts for the
device. Add on the rear door and screw in using the included M3 hardware.

ROBOTICS

Battery Calibration

We are aware of some Driver Hubs that were shipped from the factory without having their batteries properly
calibrated. If you are experiencing power issues such as trouble charging or being unable to power on the
device, try the following:

2 T

Plug Driver Hub into a charger without battery (Please use the charger that came with the Driver Hub to
ensure a proper calibration)

Turn on Driver Hub and verify that the Driver Hub reports 100% battery charge. If the Driver Hub does
not report 100% charge, you may be using a PD charger and not the one that came with the Driver Hub.

Install battery into Driver Hub while device is still on and charging
Charge for at least 8 hours and do not remove battery or charge cable
Remove Driver Hub from Charger

Hard Reboot

Battery Verification

After completing a battery calibration, use these steps to verify that your battery is functioning as expected.

. Place the battery in a Driver Hub and verify that the Driver Hub turns on.

Shake the Driver Hub with the screen still on and verify that the battery does not lose physical contact
with the Driver Hub's contacts. If power drops, please see instructions for Unexpected Shutdown above.

Take note of the indicated battery charge level, charge the Driver Hub for 10 minutes, and verify that the
battery charge level increased.

If you have the time, perform a full charge/discharge cycle with the battery to verify that the battery
behaves normally.

Digitizer Lines

Due to variances in the manufacturing process related to screen digitizer installation, some Driver Hubs
have minor visible digitizer lines on the screens when the device is powered off. These lines are more
prevalent in some units than others, but the presence or absence of digitizer lines does not impact the
performance of the touch screen or unitin any way. Please contact us at support@revrobotics.com if you
have any concerns about your specific unit.

Connectina to Control Hub

Driver Hub Won't
Connect

Control Hub

Please see Control Hub
Troubleshooting Section:

Siafus LED Blue » "Status LED is Solid
output? Blue for More than
30 Seconds”
Green
Hard Rebooti the
Driver Hub if no
networks are shown
Is the
Control Hub N
ssiD e
visible?
Yes v
Please follow the Wi-Fi reset procedure:
1. Press and hold the button on the
front of the Control Hub
2 While pressing the button, power
L on the Control Hub
Able fo sign info e 3. Release button when the Control

the Control Hub?

Pairing
Method?

Wi-Fi Direct

Unable to

Hub LED beqgins to flash a
multitude of colors. When the
Control Hub flashes Elue then
Green it has completed the reset
and is ready to connect.

/\ Information in this flowchart is for the initial bring up of connecting the Control Hub with a Driver
Hub. For issues with intermittent connection or periodic connection drops please check out the
information below this flowchart.

Check out the section
below for more
suggestions and tips!

L Metwork Inaccessible—»

igned into r1eb.l'.'ul|'|-cJ

Does the Driver
Hub connect if you
reset the App?

Connect

l—‘r’e

| Select a configuration |

Has a secondary
Driver Station been
connected to the
Control hub?

Yes

Unable fo Connect

The secondary Driver Station is | |

ANy e we painmy - likely attecting the connecton
method to Control Hub. — and atéemh;l::]:jzrun an beh:een the %nntrol Hub and
o ’ the primary Driver Hub. Try the
| T following steps:
Able to Connect Able to Connect——

« Power ofi the 2nd DS
s Power cycle the
Caontrol Hub

@ The Wi-Fi reset will down grade the Wi-Fi connection to 2.4GHz. If you have an android device
with 5GHz you may want to switch the Wi-Fi band in order to run on 5GHz. Check out the
Updating Wi-Fi Settings Section to learn more about making this switch.

External factors, such as local Wi-Fi environment, play a part in the ability to establish or maintain a
connection between a Control Hub and a Driver Station device. Like all aspects of of troubleshooting its
important to isolate an issue by asking questions and discovering the answers! As you work on
troubleshooting consider the following questions:

¢ Is your system operating on a 2.4 GHz band or 5GHz band?

e REV recommends, if you have a dual band Driver Station device, that you operate on the 5GHz Wi-

Fi band. Check out the Updating Wi-Fi Settings section to learn more about making this switch.
e What is your local Wi-Fi environment like?

e Local Wi-Fi environment effects the consistency of a connection to the Control Hub. Use a Wi-Fi
analyzer to check the local environment for channels that are cluttered with Wi-Fi networks. Change
the Control Hubs Wi-Fi channel to a channel with the least amount of overlap with other networks.

e Are you in a school or a place of business?

¢ |n addition to the amount of local networks in an environment its important to understand what those
local networks are capable of. For instance, some school districts have security measures in place
that block unauthorized Wi-Fi access points. Talk to your local Wi-Fi administrator to find out what
you need to get the Control Hub as an approved network.

e Does the the Driver Hub connect to the Control Hub until a mechanism is run?

e Certain mechanisms draw enough power from the Control Hub to put a strain on the battery. If you
notice a drop in displayed voltage when you start a code, or when a particular mechanism is run,
this may be indicative of a brown out condition. Other indicators include:

e The Driver Hub throwing errors about power to the system

e The Driver Hub making a disconnect sound

e The voltage on the Driver Hub showing 9 volts or lower when running code
e Motors running at lower speeds then what they have been set to run

e To remedy this issue check out our instructions on proper battery care.

@ If the Control Hub SSID is not shown in the list of available Wi-Fi networks, try manually entering
the Control Hub SSID on the Driver Hub to see if that allows you to connect.

If no networks are shown at all, you should reboot the Driver Hub. See Most Common Issues
section.

https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer&hl=en
https://www.revrobotics.com/rev-31-1302/

If you are still experiencing connection issues, once you have gone through the flowchart and worked on
addressing the potential root of connection issues describe in the list above, start looking for patterns in the
behavior. How often does this behavior appear? Are there certain things that happen around the same time
the disconnects happen? The following list provides some ideas on what sort of patterns you might see:

e The Driver Hub connects to Wi-Fi and the Control Hub when a team member takes it home but doesn't
connect consistently at school.

e The Driver Hub connects to the Control Hub until you start driving the robot around.

() Correlation does not equal causation of an event but is useful to take note of for further
troubleshooting

Foam Tape Installation

1. Cut foam tape into small pieces, approximately 2 inches or less long. The foam tape recommended is
approximately 1/4 inch or less wide and 1/16 inch or less thick

2. Foam tape will be applied inside the battery case, opposite battery contacts and below the ridge that the
battery door sits within.

3. Stick foam strip in the middle, both side to side and top to bottom, of the vertical surface opposite the
battery contact switch.

4. Press foam strip down firmly to make sure it sticks.

5.1 Insert battery by inserting top of battery towards foam, and gently squeezing battery towards foam with
thumb until battery can easily drop into battery case.

5.2 Continue to push the battery down until itis flush in the case.

6. Done

Still Need Assistance?

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

If you encounter any of these issues below, please email support@revrobotics.com

e Device freezes on boot, then restarts the boot process in a loop
e Device freezes on boot and never gets into the OS, even after a hard reboot

e Charging and Power issues persist after multiple battery calibrations

@ Need help getting the Log Files to send to REV Support? See Downloading Log File for more
information.

Expansion Hub Troubleshooting

The following sections, "Common Indicators and their Solution Steps," provides common indicators of
issues seen in the Expansion Hub. Think about what the potential indicators your Hub is currently exhibiting
and consider the following questions:

e Did you perform a firmware update before the Hub began to have issues?

What is the behavior of the Status LED on the Expansion Hub?

Is the Driver Station showing an error message 'Cant find the Expansion Hub Portal"?

Did the Robot Controller app open when you plugged in the RC phone and gave power to the Hub?

Are you experiencing issues with communication between a primary and secondary Hub?

@ If a path in this guide does not resolve the issue please contact REV Robotics Support at
support@revrobotics.com

Common Indicators and their Solution Steps

e The firmware update failed and the Hub is unresponsive

e Try a Firmware Update

e The LED on the Expansion Hub is not lighting up

e Try a Firmware Update

e The LED is still not lighting up

e The Hub is not being recognized or communicating with the phones

e Try doing the Hub Startup Procedure

e There are issues seeing a secondary Expansion Hub

@ Expansion Hubs purchased AFTER December 2021 no longer include an internal IMU

Issues Seeing a Secondary Expansion Hub

https://www.youtube.com/watch?v=f1ev2Ap9Ywo

you navigate as you run through the troubleshooting flowchart.

Adding an
Expansion Hub

What color is the
Status LED on the
Secondary
Expansion Hub?

Blue or Green

Are the two
Hubs
connected via
RS485?

Is your Robot
Controller
Application up
to date?

Yes

Create a new
configuration file and

The steps below utilize information provided in the Adding an Expansion Hub article. Use this article to help

Check that the secondary
Expansion Hub is receiving
power from the leader Hub.
The Hubs should be
connected via the XT30
power connection

No———>

Connect the Hubs via the
RS485 port on each Hub.

Update your Robot
Controller Application.

e

configure the robot

New File Created

Is the
secondary Hub
visible in the
configuration
portal?

No

Reconfirm that the all of the
previous questions are
correct and contact REV

Is your leader
Hub a Control
Hub or an

Use the new
configuration file and
begin coding your robot.

Its possible both Expansion
Hubs have the same
address. See the section
below for information on

changing the Expansion
Hub address.

Expansion
Hub?

Support.

@ To update a Robot Controller check out the article on Updating the Robot Controller Application.

If you are attempting to connect two Expansion Hubs together please confirm that the first Expansion Hub is
connected to the Robot Controller. From there change the Expansion Hub address. For information on how
to change the Expansion Hub address check out the FTC Wiki Using a Second Expansion Hub article.

Firmware Update

Use the REV Hardware Client to update the Expansion Hub.

USB Serial Converter Check

Plug your Expansion Hub into a Windows PC
Open the Device Manager in Settings
Click the arrow next to Universal Serial Bus Controllers

Find USB Serial Converter under the menu

o 0 0 bdPF

If this is not present there maybe a larger issue with your hub. Email support@revrobotics.com with
details of the steps you have taken so far,and any order numbers for the Expansion Hub (if you have
them)

@ If you are using a Mac you can use System Information in Lion or later (or System Profiler in
Snow Leopard and earlier versions of Mac OS) in Spotlight (press &£ and Space). The program
is in /Applications/Utilities and is the tool to see the connected USB devices and other hardware
details.

https://github.com/FIRST-Tech-Challenge/FtcRobotController/wiki/Using-Two-Expansion-Hubs#checking-the-address-of-an-expansion-hub
https://docs.revrobotics.com/rev-hardware-client/
https://docs.revrobotics.com/rev-hardware-client/expansion-hub/updating-expansion-hub

Hub Startup Procedures

o o~ w0 bd e

Unplug the USB from your RC phone

Power off the main robot switch (turn off 12V power from the Expansion Hub(s))
Wait a few seconds

Turn on the Main Robot Switch (supply 12V power to the Expansion Hub(s))

On your RC phone, press the square button and the swipe to close the FTC RC app

Plug your RC phone into the USB-- the FTC app should automatically open

1. Ifthe app doesn't automatically open you do not have a good connection from the Expansion Hub to
the Phone. Check your cables first, followed by the micro and mini USB connections.

2. Consider using some form of strain relief (like the REV USB Retention Mount or one of the many 3d
printable options available on places like Thingiverse) to keep the USB-mini port from being
damaged.

@ If the issues persists after applying the Retention Mount try running through the Firmware Update
procedure.

Still Need Assistance?

Contact REV Support with details of the troubleshooting information you have collected such as the
answers to the questions above and the outcome of your troubleshooting thus far. It will also help to send
logs or other diagnostic data to REV Support.

@ Need help getting the Log Files to send to REV Support? See Downloading Log File for more
information.

Status LED Blink Codes

The RGB LED located on the Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) near the
RS485 ports and on the bottom of the Driver Hub (REV-31-1956) provide user feedback regarding the status

of

the Hub. Below is a Table of the Blink Codes.

Control Hub

@ All Control Hub Blink Codes assume the latest Control Hub Operating System is running on the
device

http://www.revrobotics.com/rev-41-1214/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Robot Controller Application 6.0 or Higher

If a Control Hub is running Robot Controller Application 5.5 or lower the LED Blink Codes for the Hub will be
the same as an Expansion Hub running Firmware Version 1.7.0 or higher.

LED Status

aoooDOGE®®

LED Description

Solid Blue

Solid Blue

Solid Green

Blinking Blue

Blinking Orange

Blinking Magenta

When

At Boot

Anytime

Anytime

Anytime

Anytime

During Wi-Fi Reset

Hub Status

Control Hub has
power; Battery is >7V
and is waiting to
initialize
communications.

Hub is waiting for
communication with
the Driver Station Ho
Control Hub has
power; Battery is >7V

Hub has power and
active communicatior
with the Android
Platform.

Keep alive has timed
out. Fault will clear
when communication
resumes.

Battery Voltage is
lower than 7V. Either
the 12V battery need:
to be charged, or the
Expansion Hub is
running on USB pow:
only. This fault will
clear when battery
voltage is raised abo»
7V.

This will not be
overwritten by the ket
alive timeout pattern.

Control Hub changec
Wi-Fi Band to 5GHz
after pressing the
button

Control Hub changec

elelelololelele] Blinking Yellow During Wi-Fi Reset Wi-Fi Band to 2.4GH:
after pressing the
huttan

Driver Hub

@ All Driver Hub Blink Codes assume the latest Driver Hub Software is running on the device

LED A
LED Status LED Description Hub Status
Operating System is
Blinking White P . 9=y
Booting
Slalelalalalals) Blinking Green General Activity
LED B
LED Status LED Description Hub Status
 —] Solid Green Device is on
Battery Status LED
LED Status LED Description Hub Status
cocosssse Blinking Red Battery Charging
aaEE— Solid Red Battery Charged

Expansion Hub

Firmware Version 1.7.0 or Higher

LED Status LED Description When Hub Status

| — o
— p—
Adlclress #

aoooDOGE®®

Solid Blue

Solid Blue

Solid Green with one
or more blue blinks
every

~5 Seconds

Blinking Blue

Blinking Orange

Control Hub Specifications

At Boot

Anytime

Anytime

Anytime

Anytime

System Overview

Hub has power;
Battery is >7V and is
waiting to initialize

PR PR & Py

colrinrurneauvulris.
Hub is waiting for

communication with
the Robot Controller.
Hub has power;
Battery is >7V.

Hub has power and
active communicatior
with the Android
Platform. The numbe!
of blue blinks is the
same as the
Expansion Hub’s
address.

The factory default
addressis 2 (

Keep alive has timed
out. Fault will clear
when communication
resumes.

Battery Voltage is
lower than 7V. Either
the 12V battery need:
to be charged, or the
Expansion Hub is
running on USB pow:
only. This fault will
clear when battery
voltage is raised abo»
7V.

This will not be
overwritten by the ke
alive timeout pattern.

The REV Robotics Control Hub (REV-31-1595) is an affordable all in one educational robotics controller
that provides the interfaces required for building robots, as well as other mechatronics, with multiple
programming language options. The Control Hub was designed and built as an easy to use, dependable,
and durable device for use in classroom and the competition. It features an Android operating system, built-
in dual band Wi-Fi (802.11 ac/b/g/n/w), and a mature software package designed for both basic and
advanced use cases. When the Control Hub software is updated with new features, the controller can
receive a "field upgrade," through an update process that is fast and simple.

The Control Hub is an approved device for use in FIRST® Global and FIRST Tech Challenge.

Port Label

Battery

Motor

Encoder

Servo

+5V Power

Analog

Digital

o/ N4 CONTROL

L]

HUEB

1

3

4

I

L]

FIRST

Connector

XT-30

JST VH, 2-pin

JST PH, 4-pin

0.1" Header

0.1" Header

JST PH, 4-pin

JST PH, 4-pin

DATAL

1 01 23 &8 BT

Description

Connectone 12V
NiMh battery, add an
Expansion Hub with
second port

Motor power output

Quadrature encoder
input

Extended range 5V
servo output

Power for auxiliary
device(s)

Analog input with twc
channels per
connector.

Digital Input/Output
with two channels pe
connector

Four separate 12C

https://www.revrobotics.com/rev-31-1595/

12C
RS485
UART

usSe C

USB 2.0

USB 3.0

HDMI

Specifications

JST PH, 4-pin busses

Use this serial
JST PH, 3-pin communication port t
add an Expansion Ht

JST PH, 3-pin Debugging only

Connectdirectly to th
USBC Control Hub via PC,
USB 2.0

Connect USB camer:
and other USB
peripherals to the
Control Hub

USB A

Connect USB camer:
and other USB
peripherals to the
Control Hub

USB A

HDMI A Supports 4k @ 60Hz

The following tables provide the operating and mechanical specifications for the Control Hub.

General Specifications

Feature type

Processor(s)

Memory

Storaget

Wireless

Graphicst

Description

RK3328 Quad-core ARM® Cortex-A53
Texas Instruments ARM® Cortex®-M4

1GB LPDDR3
8GB eMMC 4.51

802.11 ac/b/g/niw Wi-Fi; Dual Band 2.4 & 5 GHz
Bluetooth 4.1

GPU - ARM® Mali 450MP4
HDMI 2.0 support for 4k @ 60Hz

Supports expandable storage through the SD Cat
slot

Display graphics supported through an external
display over HDMI

/\ DO NOT exceed the absolute maximum electrical specifications. Doing so will cause permanent
damage to the Control Hub and will void the warranty.

Input Power Specifications

Parameter Min

Operating voltage
range (Viy)

Absolute
maximum supply -
voltage

Motor Port Specifications

Parameter Min

Continuous
output current T

Absolute
maximum output -
current t

Encoder Port Specifications

Parameter Min Typ

Typ

12

Typ

Max Units
15 V
15 \Y

Max Units
10 A
20 A

Exceeding the continuous current maximum
depends on many thermal factors. The outputs wi
self protect once they approach their thermal limit,

Maximum current is ultimately limited by the in-lin
battery fuse.

Max Units

Encoder port
input voltage

Encoder port
supply voltage

Encoder port total
supply current

3.3 V
3.3 \Y
500 mA

@ See Sensors - Encoders for more information on encoders and using the encoder ports. For using
non-REV motor encoders see Using 5V Sensors - Encoders for more details.

Digital Port Specifications

Parameter Min

Digital port input
voltage

Digital port
supply voltage

Digital port total
supply current

Typ

Max Units
3.3 \Y
3.3 \Y
1 A

@ See Sensors - Digital for more information on using the digital ports. See Using 5V Sensors for
information on using 5V logic level devices with the digital ports.

Analog Port Specifications

Parameter Min

Analog port input
voltage range t

Analog port
supply voltage

Analog port total
supply current

Typ

Max Units
5 \Y

3.3 \Y
500 mA

The analog input will accept up to 5V. When usin

- 5V analog sensors, a custom wiring harness is
needed to provide 5V of power for the sensor as
the power pin provides 3.3V.

@ See Sensors - Analog for more information on using the analog ports.

12C Port Specifications

Parameter Min Typ Max Units

12C portinput
voltage range

12C port supply

- 3.3 \Y
voltage
I2C port total
- - 500 mA
supply current
Bus speed - 100/400 - kHz

@ See Sensors - 12C for more information on using the 12C ports. See Using 5V Sensors for
information on using 5V logic level devices with the I12C ports.

Servo Port Specifications

Parameter Min Typ Max Units
Servo output

. 0 - 5 V
signal voltage
Servo port suppl

p pply i 5 i Vv
voltage
Servo port pair
total supply - - 2 A
current t
Absolute
maximum total - - 5 A
supply current F
Servo port output
500 - 2500 Hs

pulse range

+5V Power Port Specifications

Parameter Min

+5V power port
output voltage

+5V power port
pair total supply
current T

Absolute
maximum total
supply current +

Mechanical Specifications

Parameter
Body length
Body width
Body height
Weight

Mounting hole
pitch

Min

Total supply is shared across pairs of ports (0-1, 2
3, 4-5)

The 5A total supply current for all servo ports and
+5V power ports is shared.

Typ Max Units
5 - \Y
- 2 A
- 5 A

Total supply currentis shared across both ports

The 5A total supply current for all servo ports and
+5V power ports is shared.

Typ Max Units
103 - mm
143 - mm
29.5 - mm
209 - g
16 - mm

Expansion Hub Specifications

The REV Robotics Expansion Hub (REV-31-1153) is a low-cost educational device that can communicate
with any computer (commonly the REV Robotics Control Hub or an Android Phone) to provide the interfaces
required for building robots and other mechatronics. The Expansion Hub was purpose built to stand up to
the rigors of the classroom and competition field. It features a mature firmware designed for basic and
advanced use cases with the ability to be field upgraded in the future.

The 1O ports of the Expansion Hub are identical in specification to the Control Hub. Within this
documentation, many sections may refer to the Control Hub, but the connections are the same for the

Expansion Hub.

The REV Robotics Expansion Hub is an approved device for use in the FIRST Tech Challenge and FIRST

Global.

Port Label

Battery

Motor

Encoder

Servo

5V Aux Power

SR

I/ Y EXPANS/O.

HUEB

DOoOo. 000. 000. O00. DO0. OO0.
0 1 2] 4 1

Qty

anan

I

L
L

q
L
&

FIRST

EEEE]

Connector

XT30

JST VH, 2-pin

JST PH, 4-pin

0.1" Header

0.1" Header

Description

Connectone 12V
NiMh battery, add an
Expansion Hub with
second port

Motor power output

Quadrature encoder
input

Extended range 5V
servo output (500-
2500ms)

Auxiliary device 5V/2

Analog input 0-5.0V
measurement range
with two channels pe

https://www.revrobotics.com/rev-31-1153/

Analog 4 JST PH, 4-pin connector. 3.3V
provided on the
connector power pin.

Digital Input/Output
Digital 8 JST PH, 4-pin with two channels pe
connector

Four separate 12C
busses,
100kHz/400kHz bus
speed

12C 4 JST PH, 4-pin

Serial communicatior
RS485 2 JST PH, 3-pin portto add a Hub
(Control or Expansior

UART 2 JST PH, 3-pin Debugging only

Connect directly to th
MINI USB 1 USB Mini-B Robot Controller
Android device or PC

Specifications

The following tables provide the operating and mechanical specifications for the Expansion Hub.

/\ DO NOT exceed the absolute maximum electrical specifications. Doing so will cause permanent
damage to the Expansion Hub and will void the warranty.

Input Power Specifications

Parameter Min Typ Max Units
Operating voltage

8 12 15 \Y
range (Viy)
Absolute
maximum supply i i 15 Vv
voltage

Motor Port Specifications

Parameter

Continuous
output current T

Absolute
maximum output
current ¥

Encoder Port Specifications

Parameter Min

Encoder port
input voltage

Encoder port
supply voltage

Encoder port total
supply current

Min

Typ

Typ Max Units
- 10 A
- 20 A

Exceeding the continuous current maximum
depends on many thermal factors. The outputs wi
self protect once they approach their thermal limit,

Maximum current is ultimately limited by the in-lin

battery fuse.
Max Units
3.3 V
3.3 V
500 mA

@ See Sensors - Encoders for more information on encoders and using the encoder ports. For using
non-REV motor encoders see Using 3rd Party Sensors - Encoders for more details.

Digital Port Specifications

Parameter Min
Digital port input 0
voltage

Digital port

supply voltage

Digital port total
supply current

Typ

Max Units
3.3 \Y
3.3 \Y
1 A

@ See Sensors - Digital for more information on using the digital ports. See Using 5V Sensors for
information on using 5V logic level devices with the digital ports.

Analog Port Specifications

Parameter Min Typ Max Units
Analog port input

gp p) 5 Vv
voltage range t
Analog port

gp - - 3.3 \Y
supply voltage
Analog port total

- - 500 mA

supply current

The analog input will accept up to 5V. When usin
5V analog sensors, a custom wiring harness is
needed to provide 5V of power for the sensor as
the power pin provides 3.3V.

@ See Sensors - Analog for more information on using the analog ports.

12C Port Specifications

Parameter Min Typ Max Units

12C port input
voltage range

I2C port supply

- 3.3 V

voltage
I2C port total

- - 500 mA
supply current
Bus speed - 100/400 - kHz
12C pull-u

P P - 2.49 - kQ

resistor

@ Expansion Hubs purchased AFTER December 2021 no longer include an internal IMU

@ See Sensors - 12C for more information on using the 12C ports. See Using 5V Sensors for
information on using 5V logic level devices with the I12C ports.

Servo Port Specifications

Parameter Min Typ Max Units
Servo output

. 0 - 5 \Y
signal voltage
Servo port suppl

p pply 5 i Vv
voltage
Servo port pair
total supply - - 2 A
current T
Absolute
maximum total - - 5 A
supply current
Servo port output
500 - 2500 gs
pulse range
+ Total supply is shared across pairs of ports (0-1, 2
3,4-5)

+ The 5A total supply current for all servo ports and

+5V power ports is shared.

+5V Power Port Specifications

Parameter Min Typ Max Units

+5V power port
output voltage

+5V power port
pair total supply - - 2 A
current T

Absolute
maximum total -
supply current £

Mechanical Specifications

Parameter
Body length
Body width
Body height
Weight

Mounting hole
pitch

Total supply currentis shared across both ports

The 5A total supply current for all servo ports and
+5V power ports is shared.

Min Typ Max Units
- 103 - mm
- 143 - mm
- 29.5 - mm
- 209 - g
- 16 - mm

Driver Hub Specifications

The REV Robotics Driver Hub (REV-31-1596) is a compact mobile computing device designed for
interfacing with the Control Hub (REV-31-1595). The Driver Hub was designed and built as an easy to use,
dependable, and durable device for use in classroom and the competition. It features an Android operating
system, built-in dual band Wi-Fi (802.11 ac/b/g/n/w), and support for many off-the-shelf gamepads and HID
devices connected through built-in USB ports. When the Driver Hub software is updated with new features,
the device can receive a "field upgrade,” through a fast and simple update through the REV Hardware

Client.

The Driver Hub is an approved device for use in FIRST® Global and FIRST Tech Challenge.

https://www.revrobotics.com/rev-31-1596

Label

Power

USB C

USB 2.0

Ethernet

Specifications

NETWORK

USBC USB 2.0 POWER
(c)

CHARGE / UPDATE

Qty Interface Description

Turns the device on

1 Button
and off

Connect directly to th
Driver Hub via PC,
USB 2.0

1 use C Supports fast chargin
the Driver Hub over
USB PD

Connect USB
controllers and other
HID devices to the
Driver Hub

3 USB A

10/100 base-T
1 RJ45 Supports 12V DC
passive POE

The following tables provide the mechanical specifications for the Driver Hub.

senerail Specincauons

Feature type Description

Processor RKPX30 Quad-core ARM A35
Memory 1GB LPDDRS3

Storaget 8GB eMMC 4.51

802.11 ac/b/g/niw Wi-Fi; Dual Band 2.4 & 5 GHz

Wireless
Bluetooth 4.1
Graphics ARM® Mali 450MP4
+ Supports expandable storage through the SD Cat
slot
Mechanical Specifications
Parameter Min Typ Max Units
Body length - 3.375 - in
Body width - 5.25 - in
Body height - 1.0 - in
Weight - 9.8 - 0z
Mounting hole
) - 16 - mm
pitch
Screen size
. 5 in
(diagonal)
Screen resolution 800 x 600 pX

Port Pinouts

CONTROL HUB PIN OUT

RGB LED

USER INPUT BUTTON

LEFT Y CONTROL
L HUB

PROUD SUPPORTER OF

[SPFIRST

MOTOR ENCODER
0oO0. 000. 000. 000. 000. 000. OO00. 000,

0 1 2 3 4 5 +5V POWER

o[l (e [-] K
- M- - GND |3.3V [EI¥A] sct 2
E e ey [
(Rsd8s |
1 -
- | - - BB
E — B
: ER eI e
2] B
(| E-—d
N o [V

ANALOG

[exmmm]
[ono [3.3v{IE] o |

A

0 1 2 3 4 5
-5 [=8% [=4 [=Y [=Y [=f [==f [==2

Protection Features

The Control (REV-31-1595) and Expansion Hub (REV-31-1153) were designed with a number of protection
features built into the device. These include the following:

e Reverse battery input protection

e Electrostatic discharge (ESD) protection on all connections

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

° .
Over-current protection

on all power buses
¢ Digital I/O bus

12C bus

Analog bus

e USB

e Servo bus per pair (0-1, 2-3, 4-5)

e Encoder bus
e Qver-current monitoring for individual Motor Channels
e Keyed and locking connectors

e Fail-safe mode at communication loss

Cables and Connectors

The REV Robotics Control Hub (REV-31-1595) connector selection provides a robust high-density solution
for the user. All connectors are keyed and locking except for the Servo, 5V auxiliary power, HDMI , and USB
ports.

XT-30 - Power Cable

JST VH - Motor Power

JST PH - Sensors and RS485

XT-30 - Power Cable

The XT30 connector is used for connecting a battery and powering a Control/Expansion Hub. Each
Control/Expansion Hub has both a Male and Female XT30 connector, as determined from the metal
contacts, not the plastic housing. While either connector can provide power to the hub, itis the convention to
use the male connector for "power in" to the hub, and to use the female connector for "power out" to a
connected secondary device, like an Expansion Hub or XT30 Power Distribution Block, from the single

https://www.revrobotics.com/rev-31-1595/

Most teams will want to use pre-made cables which can be conveniently sourced from the REV Robotics
website. However, teams can also make their own cables. These connectors are solder-cup style, do not
require any crimping tools, and are available from various online vendors. Because these connectors are an
open design, they are manufactured by a variety of sources and quality may vary. AMASS branded
connectors are recommended, and are what is used on REV products, but there are many other quality
vendors available.

Table 1: Premade XT-30 Cables and Accessories

Cable Type Length REV Robotics Part Number
XT-30 Male - XT-30 Female 30cm REV-31-1392
XT-30 Male - XT-30 Female 50 cm REV-31-1394
XT-30 Female - Tamiya 8cm REV-31-1382
XT-30 Female - Anderson

8 cm REV-31-1385
Power Pole Style
Power Switch Cable (XT30 Male

12 cm REV-31-1387
— XT30 Female)
XT30 Connector Pack — 5 Pairs - REV-31-1399

JST VH - Motor Power

Motor Power connections on the Control Hub (REV-31-1595) use the JST VH style connector. This
connector is keyed and locking with a small latch, seen below, which must be depressed to release the
cable.

1) Push to insert 2) Listen for the lateh to ‘click’ 3) To Remove: Press to lift latch ~ 4) Pull away!

Figure 1: How to Use a JST VH Cable

REV Robotics recommends, in most cases, that teams use pre-made cables because crimp quality is better
when made using industrial tooling. These cables can be purchased directly from the REV Robotics website
or through other online vendors.

https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/rev-31-1382/
https://www.revrobotics.com/rev-31-1385/
https://www.revrobotics.com/rev-31-1387/
https://www.revrobotics.com/rev-31-1399/
https://www.revrobotics.com/rev-31-1595/

Premade JST VH Cables and Accessories

REV Robotics Part

Cable/Accessory Pins Length
Number

JST VH 2-Pin Motor)

2 pins 30cm REV-31-1412
Cable
JST VH 2-Pin Motor)

2 pins 50cm REV-31-1413
Cable
JST VH 2-Pin Motor)

2 pins 100 cm REV-31-1526
Cable
Anderson to JST VH)

2 pins 12cm REV-31-1381
Cable
JST VH 2-pin Joiner i

2 pins - REV-31-1429

Board

For teams that want to try crimping their own cables, or to find more information about the connectors, Table
3 lists the appropriate part numbers.

Connector Specifications

e 10A Continuous Current (16AWG)
e 3.96mm Pitch

e Accepts 22-16AWG Wire

JST VH Connector Part Number Reference

Manufacturer Part Number DigiKey Part Number

Contact, JST VH, 18-22AWG SVH-21T-P1.1 455-1133-1-ND
Contact, JST VH, 16-20AWG SVH-41T-P1.1 455-1319-1-ND
Housing, JST VH, 2-pin VHR-2N 455-1183-ND
Header, JST VH, 2-pin, Top

B2P-VH 455-1639-ND
Entry
Header, JST VH, 2-pin, Side

B2PS-VH 455-1648-ND

Entry

JST PH - Sensors and RS485

https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/jst-vh-2-pin-motor-cable-4-pack/
https://www.revrobotics.com/rev-31-1381/
https://www.revrobotics.com/rev-31-1429/
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SVH-21T-P1.1/455-1133-1-ND/527367
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SVH-41T-P1.1/455-1319-1-ND/608888
https://www.digikey.com/product-detail/en/jst-sales-america-inc/VHR-2N/455-1183-ND/608624
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B2P-VH(LF)(SN)/455-1639-ND/926547
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B2PS-VH(LF)(SN)/455-1648-ND/926555

The JST PH style connector is used for motor encoder, analog, digital, 12C, RS485, and UART connections
on the Control Hub and Expansion Hub. These are all 4-pin connections except for the RS485 and UART
which are 3 pin. The connectors are keyed (they only insert in one orientation) and are friction locking.
Below the keying feature aligned with the cable is shown.

HOW TO INSERT A JST PH CONNECTOR

THE GOLDEN RULE: Always make sure that the knotches of the two pieces align before inserting!

REV Robotics recommends in most cases that teams use pre-made cables because the quality of the crimp
is better when made using industrial tooling. These cables can be bought directly from the REV Robotics
Website or through other online vendors.

Premade 4-pin JST PH Cables

REV Robotics Part

Cable/Accesso Pins Length
Y 9 Number
JST PH 4-Pin Sensor
30cm REV-31-1407
Cable
JST PH 4-Pin Sensor
50 cm REV-31-1408
Cable
JST PH 4-Pin Sensor
4 100 cm REV-31-1409
Cable
JST PH 4-pin Joiner
4 REV-31-1388

Board

Premade 3-pin JST PH Cables

REV Robotics Part

Cable Pins Length
Number
JST PH 3-pin
L 30cm REV-31-1417
Communication Cable
JST PH 3-pin
50 cm REV-31-1418

Communication Cable

https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/rev-31-1388/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/

JST PH 3-pin 3 100 cm REV-31-1565
Communication Cable

For teams that want to try crimping their own cables, or to find more information about the connectors, the
table below lists the appropriate part numbers.

Connector Specifications
e 2A continuous current (24AWG)

e 2.0mm pitch
e Accepts 32-24AWG wire

JST PH Connector Part Number Reference

Manufacturer Part
Connector Parts Vendor Part Number
Number

Contact, JST PH, 30-

SPH-002T-P0.5S DigiKey 455-1127-1-ND
24AWG
Contact, JST PH, 28- -
SPH-002T-P0.5L DigiKey 455-2148-1-ND
24AWG
Housing, JST PH, 4- .
pin PHR-4 DigiKey 455-1164-ND
i
Header, JST PH, 4-pin, .
B4B-PH-K-S DigiKey 455-1706-ND
Top Entry
Header, JST PH, 4-pin, .
) S4B-PH-K-S DigiKey 455-1721-ND
Side Entry
Housing, JST PH, 3- _
pin PHR-3 DigiKey 455-1126-ND
i
Header, JST PH, 3-pin, -
B3B-PH-K-S DigiKey 455-1705-ND
Top Entry
Header, JST PH, 3-pin, .
. S3B-PH-K-S DigiKey 455-1720-ND
Side Entry
Recommended
. IWISS SN-2549 Amazon SN-2549
Crimping Tool

Integrated Sensors

The REV Robotics Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) integrate a number of

https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SPH-002T-P0.5S/455-1127-1-ND/527358
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SPH-002T-P0.5L/455-2148-1-ND/1634657
https://www.digikey.com/product-detail/en/jst-sales-america-inc/PHR-4/455-1164-ND/608606
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B4B-PH-K-S(LF)(SN)/455-1706-ND/926613
https://www.digikey.com/product-detail/en/jst-sales-america-inc/S4B-PH-K-S(LF)(SN)/455-1721-ND/926628
https://www.digikey.com/product-detail/en/jst-sales-america-inc/PHR-3/455-1126-ND/527357
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B3B-PH-K-S(LF)(SN)/455-1705-ND/926612
https://www.digikey.com/product-detail/en/jst-sales-america-inc/S3B-PH-K-S(LF)(SN)/455-1720-ND/926627
https://www.amazon.com/IWISS-Crimping-AWG28-18-Ratcheting-Connector/dp/B01N4L8QMW/ref=sr_1_2?ie=UTF8&qid=1546882885&sr=8-2&keywords=sn-2549
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

feedback sensors. Some of these are user accessible in the latest FTC Android Studio SDK, but others are

not yet directly user accessible. These sensors are in some cases also used by the Control Hub and
Expansion Hub for internal safety monitoring.

Battery Voltage Monitoring [Accessible]
Integrated 9-axis IMU [Accessible]

e Bosch BNOO55 9-axis absolute orientation sensor

e Internally connected to 12C port 0 and configured to address 0x28

Current Monitoring

Battery [Accessible]
I12C Bus [Accessible]

Digital Power Bus [Accessible]

Servo Power Bus [Not Accessible]

e Per Motor Channel Current Monitoring [Accessible]

Dimensions and Important Component Locations

88 mm

128 mm

103 mm

5=z T

]

29.5 mm

IMU Location

When using the Control Hub (REV-31-1595) or Expansion Hub (REV-31-1153) please note the location of
the IMU in the graphic below. The Hub’s orientation may impact the values received from the embedded

IMU.

BELOW: IMU Details Shown in Enlarged View

UL

I.. =] i = -_:
I 83 mm IMU iy e
ik n
WTHL 35-mm *fﬁ
O (cooYooooooooooooooo! i[oooooo) 0O

Wi-Fi Radio Location

The Control Hub has an embedded Wi-Fi radio for wireless communication. The antenna is located towards
the top of the Control Hub itself. The graphic below shows the location of antenna.

@ DO NOT put a battery or other Wi-Fi blocking object on top of the Control Hub. This can lead to
higher ping times for communication between the Control Hub and the Driver Station.

BELOW: Radio Antenna Shown in Enlarged View

: UL

—

0 mm

e 1 _
Lm,63mm

B RADIO

- ANTENNA

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Updating and Managing

Managing Wi-Fi on the Control Hub

The Control Hub creates a Wi-Fi access point to connect a Driver Station device or laptop to the Control
Hub for programming and operation. Settings for the Control Hub access point are managed through the
Robot Controller Console or the User Button on the Control Hub.

Before making changes to the Control Hub's Wi-Fi network checking what Wi-Fi bands are supported by the
devices being used is important to ensure they will work as expected. Below are the Android Devices that
are officially supported:

Supported Android Devices and Wi-Fi Band Capabilities

Android Device Wi-Fi Band

REV Driver Hub (REV-31-1596) 2.4 GHz & 5 GHz (Dual Band)
Moto G (2nd generation) 2.4 GHz (Single Band)

Moto G (3rd generation) 2.4 GHz (Single Band)

Moto G (4th generation) 2.4 GHz (Single Band)

Moto G5 2.4 GHz & 5 GHz (Dual Band)
Moto G5 Plus 2.4 GHz & 5 GHz (Dual Band)
Moto E4 2.4 GHz & 5 GHz (Dual Band)
Moto E5 2.4 GHz & 5 GHz (Dual Band)
Moto E5 Play 2.4 GHz & 5 GHz (Dual Band)

The following page is split into two sections. The first will cover how to access the Wi-Fi Settings through the
Robot Controller Console. Itis recommended to use the REV Hardware Client as it will allow the user to
access the Wi-Fi settings over a wired connection. The second will run through the steps for using the
Control Hub's User Button to preform a Wi-Fi reset or Wi-Fi band change.

@ If you run into any problems trying to use the Hardware Client or when resetting the Wi-Fi, please
contact support@revrobotics.com

https://www.revrobotics.com/rev-31-1596/

Using the Robot Controller Console

The Robot Controller Console gives access to the Wi-Fi settings of the Control Hub. Below are the steps to
access the Robot Controller Console through the REV Hardware Client and the Driver Station application
for updating Wi-Fi settings.

REV Hardware Client

The REV Hardware Client allows teams access to the Hub's Wi-Fi Settings information through a wired
connection. The information is visible through the main page of the Robot Control Console and updated
through the Program and Manage tab.

Download the latest version of the REV Hardware Client and install on a Windows PC. Skip this step if
completed already.

Steps

Control Hub

Power on the Control Hub, by plugging the 12V
Slim Battery (REV-31-1302) into the XT30
connector labeled “BATTERY” on the Control Hub.

The Control Hub is ready to connect with a PC %'\?/ <::'
when the LED turns green. Note: the light blinks

blue every ~5 seconds to indicate that the Control
Hub is healthy.

= ‘
: ~5 Seconds

Plug the Control Hub into the PC using a USB-A to
USB-C Cable (REV-11-1232)

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the Ul
under the Hardware Tab. Select the Control Hub.

() REV Hardware Client — O X

Hardware

Connected Hardware

Control Hub REV-HCDEMO
UsSB

Last check: 9:50 am

https://github.com/REVrobotics/REV-Software-Binaries/releases/download/rhc-1.4.2/REV-Hardware-Client-Setup-1.4.2.exe
https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-11-1232/

& Scan For Devices
Don't see your device?

@ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Select the Program and Manage tab.
This will take you to the Robot Controller Console build into the REV Hardware Client.

a REV Hardware Client

Hardware Downloads About

Connected Hardware

Last check: 9:50 am

Control Hub REV-HCDEMO

=11

& Scan For Devices
Don't see your device?

Control Hub REV-HCDEMO

Backup and Restore

~ Control Hub Operating System

Current Version: 1.1.2-betal Up-to-Date
Release Notes

~ Robot Controller App

Current Version: 5.5 Up-to-Date
Release Notes

v Hub Firmware

Current Version: 1.8.2 Up-to-Date
Release Notes

-

@ Report an Issue

Once in the Robot Controller Console, there are two options.

If just the Wi-Fi Access Point name and password need to be found, they can be seen on the main page of

the Robot Controller Console.

If any of the Wi-Fi Access Point information needs to be changed, select the menu button in the upper right-
hand corner of the page, indicated in the image below.

@ REV Hardware Client

Hardware Down About

Connected Hardware

Last check: 9:50 am

Control Hub REV-HCDEMO

E
£~
- =

Control Hub REV-HCDEMO UsSB

Robot Controller Connection Info

The connected robot controller resides on the wireless network named:
REV-HCDEMO

The passphrase for this network is:

password

Robot controller status:
Server OK (Running since Dec 31, 6:00 PM)

Active connections:
Windows #1 connection.html

& Scan For Devices

Don't see your device? @ Report an Issue

When the menu opens, select Manage.

@ REV Hardware Client - O *

Hardware Downloads About

Connected Hardware ! Control Hub REV-HCDEMO

Last check: 9:50 am

Control Hub REV-HCDEMO

T E

Blocks

OnBotJava

Manage

Help

Robot controller status:
Server OK (Running since Dec 31, 6:08 PM)

Active connections:
Windows #1 connection_html

& Scan For Devices

Don't see your device? @ Report an Issue

The Manage page is where the Wi-Fi Access Point information for the Hub can be viewed and changed. In
the image below, the Hub's Wi-Fi name, password, band, and channel can be changed. Editing these
settings can help when the Hub is not showing up as a potential connection point from a computer or Driver
Station device.

Once changes have been made select Apply Wi-Fi Settings.

@) REV Hardware Client - m] X

Hardware Downloads About

Connected Hardware

Last check: 9:50 am

Confrol Hub REV-HCDEMO
usB

{74

WiFi Settings

Name

REV-HCDEMO

New Password

[Show Password
WiFi Band
(0 24GHz ® 5GHz

h GHz
only support 2.

1is highly recommended, unless you need to connect older devices that

WIiFi Channel
auto (5 GHz) b

. " -

= Sc-an For D.E!JICE!Sj Apply WIFI Settings

Don't see your device? - o _ @ Report an Issus
‘You will need to reconnect to the new WiFi network after chanaina the Control Hub's name and/or

(1) Once updates are made to the network reconnection to the new Wi-Fi network is needed. When
accessing the REV Hardware Client via a USB connection the Control Hub will stay connected to
the REV Hardware Client. Rescanning for devices is necessary for changes to show in the
Hardware Client.

Driver Station Application

The Manage page of the Robot Controller Console can also be accessed via the Driver Station Application.
This is helpful in event environments, where Field Technical Staff may request that you change Wi-Fi bands
or channels to mitigate disconnections.

Select the three horizontal dots in the upright corned of the Driver Station Application

- Network: FTC-BMAO
/w Robot Connected Ping: No Heartbeat - ch 149 all User1 User2 L
DS: 100%

| 5 | [[11]]
Practice Timer
. Status: robot is stopped
230 © . OROTIS SIOPF

v Select Op Maode v
~ Autonomous | TeleOp -

In the drop down menu select Program & Manage.

Robot Connected

Settings

DS: 100%

==}
Practice Timer Restart Robot
helloRobotTest

230 ©

Status : Robot is std

Configure Robot

Program & Manage

Self Inspect
About

Exit

Once in the Robot Controller Console, there are two options.

If just the Wi-Fi Access Point name and password need to be found, they can be seen on the main page of
the Robot Controller Console.

If any of the Wi-Fi Access Point information needs to be changed, select the menu button in the upper right-
hand corner of the page, indicated in the image below.

robot

FIRST= contraller

console

Robot Controller Connection Info

The connected robot controller resides on the wireless network named:
FTC-BMAO

The passphrase for this network is:
password

To remotely connect to the controller, connect your laptop's wireless adapter to this
network, using the passphrase to gain access. Once connected, enter the following
address into your web browser:

http://192.168.43.1:8080

¢ O <

When the menu opens, select Manage.

robot
FIRST= controller

console

Blocks

OnBotJava

address into your web browser:
http://192.168.43.1:8080

0 €O 4 ® |

The Manage page is where the Wi-Fi Access Point information for the Hub can be viewed and changed. In
the image below, the Hub's Wi-Fi name, password, band, and channel can be changed.

Once changes have been made select Apply Wi-Fi Settings.

robot
FIRST= controller

console

Robot Controller version: 6.2

Control Hub OS version: 1.1.2

REV Hub firmware versions:
Control Hub: 1.8.2

WiFi Settings
Name
v © 4 ® n

‘ /\ You will need to reconnect to the new Wi-Fi network after changing the name/and or password.

Using the User Button

The Control Hub has a user button underneath the LED on the right side of the device. This button allows for
a Wi-Fi reset or changing the Wi-Fi band currently being used on the Control Hub.

Wi-Fi Reset

If you are unable to connect to the Control Hub's Wi-Fi after switching to the 5 GHz band, you can perform a

Wi-Fi factory reset. The Wi-Fi network name and password will be reset to their default values, and the Wi-Fi
band will be setto 2.4 GHz. To perform a Wi-Fi reset, please follow the steps below.

(1) The Wi-Fi reset can take several minutes to complete.

Step

Press and hold the button on the front of the Control i V)NV CONTROL
Hub. HUEB

[
WITCF ENCCCER:

Conftrol Hub

While pressing the button, power on the Control
Hub.

/W CONTROL
HUE

Silm Battery —

A 3

Release button when the Control Hub LED begins

to flash a multitude of colors. When the Control Hub
flashes Blue then Green it has completed the reset

and is ready to connect.

@ When the Control Hub flashes Blue then Green it has completed the reset and is ready to
connect. The Wi-Fi network will reset back to the default name and password.

Changing Wi-Fi Band

When running version 1.1.2 or later of the Operating System, the Control Hub can switch between the
2.4GHz and 5GHz Wi-Fi bands without access to the REV Hardware Client or the Robot Controller
Console. This will only change the Wi-Fi band. When switching to a Wi-Fi band this way, the most recent
channel selected on that band will be used (defaulting to auto).

Step Image

While pressing the button, power on the Control
Hub.

Control Hub

Press and hold the button on the front of the Control
Hub after the Control Hub has fully booted (LED is
solid green)

Release button when the Control Hub LED flashes
MAGENTA or YELLOW.

@ The Control Hub's LED blinks magenta when the band is switched to 5 GHz and yellow when the
band is switched to 2.4 GHz.

REV Hardware Client

The REV Hardware Client is software designed to make managing REV devices easier for the user. This
Client automatically detects connected device(s), downloads the latest software for those device(s), and
allows for seamless updating of the device(s).

For more information on the REV Hardware Client, see the User's Manual.

Latest REV Hardware Client - Version 1.4.3

Download Latest REV Hardware Client

Feature Summary

e Automatically detect supported devices when connected via USB

e Connecta REV Control Hub via Wi-Fi

¢ One Click update of all software on connected devices

e Pre-download software updates without a connected device

e Back up and restore user data from Control Hub

¢ Install and switch between DS and RC applications on Android Devices
e Access the Robot Control Console on the Control Hub

e Auto-update to latest version of the REV Hardware Client

https://docs.revrobotics.com/rev-hardware-client/
https://github.com/REVrobotics/REV-Software-Binaries/releases/download/rhc-1.4.3/REV-Hardware-Client-Setup-1.4.3.exe

Display devices connected via RS485
Supported Devices

e REV Control Hub (REV-31-1595)

e REV Expansion Hub (REV-31-1153)
e REV Driver Hub (REV-31-1596)

e Android Device via ADB

Updating Firmware

Updating the Expansion Hub Firmware

There are two boards within the Control Hub: an Expansion Hub and an Android controller. The Expansion
Hub board built into the Control Hub, facilitates a line of communication between the builtin Robot
Controller and the motors, servos, and sensors. In order to improve the quality of the Hubs, REV Robotics
will release firmware updates for the Expansion Hub. When a firmware release occurs, both Control Hub
and Expansion Hub users will need to update their Expansion Hub firmware to the newest version.

There are two ways to update the Expansion Hub Firmware. Itis recommended to use the REV Hardware
Client as it will automatically notify the user if the Hub's firmware is out of date, download the latest firmware,
and install on the device. The second set of steps utilizes the FIRST Robot Controller Console.

To use the FIRST Robot Controller Console, the Manage interface is needed to upload the firmware file to
the Control Hub. You can then use a Driver Station that is connected to the Control Hub to initiate the
firmware update. You can download the latest firmware below.

Using the REV Hardware Client

Control Hub

@ In order to use the REV Hardware Client for firmware updates, the Robot Controller Application
must first be updated to version 5.5. After updating the application you may need to close out of
the REV Hardware Client in order for the firmware update to be available.

Steps

Power on the Control Hub, by plugging the 12V
Slim Battery (REV-31-1302) into the XT30

https://www.revrobotics.com/rev-31-1302/

connector labeled “BATTERY” on the Control Hub.

The Control Hub is ready to connect with a PC
when the LED turns green.

Note: With Robot Controller Application versions
5.5 and below the light will blink blue every ~5
seconds. Please update to 6.0.

Plug the Control Hub into the PC using a USB-A to
USB-C Cable (REV-11-1232)

Startup the REV Hardware Client. Once the Control Hub is fully connected it will show up on the front page

of the Ul under the Hardware Tab. Select the Control Hub.

@

Hardware 3 &

\ Control Hub
y: = .|

Connected Hardware

Control Hub REV-HCDEMO

& Scan For Devices
Don't see your device?

(@ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Under Hub Firmware select

Download.

@) REV Hardware Client

Hardware Downloads About

Connected Hardware

Update

Last check: 10:11 am

Control Hub REV-HCDEMO
UsB

> Control Hub Operating System

Control Hub REV-HCDEMO USB ®

https://www.revrobotics.com/rev-11-1232/

> Robot Controller App

v Hub Firmware

Current Version: 1.7.2 Out-of-Date £\
Latest Version: 1.8.2

Release Notes

£ Scan For Devices

Don't see your device? - @ Report an Issue

Once the firmware has downloaded, select Update.

@) REV Hardware Client

Hardware Downloads About

Connected Hardware

Control Hub REV-HCDEMO

Update Program and Manage Backup and Restore Send Logs to REV
Last check: 10:11 am

s
-

Control Hub REV-HCDEMO

> Control Hub Operating System
> Robot Controller App

v Hub Firmware

Current Version: 1.7.2 Out-of-Date g\
Latest Version: 1.8.2

Release Motes

(Already Downloaded)|

& Scan For Devices

-
Don't see your device? - @ Report an Issue

When the firmware update has completed a status message "Firmware successfully updated" The status for
the Hub Firmware will also change to "Up-to-Date."

@ REV Hardware Client

Hardware Downloads About

Firmware successfully updated

x
L weriwwirww REVHCDEMO USB ®
Update Program and Manage Backup and Restore
Last check: 10:11 am

-
-

Connected Hardware

Control Hub REV-HCDEMO

B
i |

> Control Hub Operating System

> Robot Controller App

~ Hub Firmware

Current Version: 1.8.2

Release Notes

@ Report an Issue

Expansion Hub

Plug the Expansion Hub into a PC using a USB-A to Mini USB Cable.

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the Ul
under the Hardware Tab. Select the Expansion Hub.

) REV Hardware Client — [} x

Hardware

Connected Hardware

https://www.youtube.com/watch?v=pCNbb050D7c

& Scan For Devices
Don't see your device?

@ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Under Hub Firmware select
Download.

a REV Hardware Client

Hardware Downloads About

Connected Hardware E-‘?I Expansion Hub USB: DQ2A8P90

Update

Last check: 12:46 pm

' Expansion Hub
-1 USB: DQ2A8P90

v~ Hub Firmware

Current Version: 1.7.2 Out-of-Date £\
Latest Version: 1.8.2
Release Nofes

£ Scan For Devices .
Don't see your device? - @ Report an Issue

Once the firmware has downloaded, select Update.

(i REV Hardware Client

Hardware Downloads About

Connected Hardware E—'?I Expansion Hub USB: DQ2A8P90

Update

Last check: 512 pm

| Expansion Hub
-1 USB: DQ2ABP90

v Hub Firmware

Current Version: 1.7.2 Out-of-Date A
Latest Version: 1.8.2
Release Notes

(Already Downloaded)

& Scan For Devices .
ice?
Don't see your device? - @ Report an Issue

When the firmware update has completed a status message "Firmware successfully updated” The status for
the Hub Firmware will also change to "Up-to-Date."

(@) REV Hardware Client — O X

Hardware Downloads About

Firmware update successfully completed

= X
Connected Hardware 3 ey S orooneey USB: DQ2A8P90

Update

Last check: 5:12 pm
-

v Hub Firmware

I Expansion Hub .
s T Y Current Version: 1.8.2 Up-to-Date

Release Notes

& Scan For Devices .
Dont see your device? - @ Report an Issue

Using the Robot Controller Console

Download the Latest REV Hub Firmware - Version 1.08.02

Updating the Expansion Hub Firmware

1. On the Manage page of the Control Hub user interface, press the Select Firmware button to to select the
firmware file that you would like to upload.

N

An Upload button should appear after you successfully selected a file.

https://www.revrobotics.com/content/sw/REVHubFirmware_1_08_02.bin

2. Press the Upload button to upload the firmware file from your computer to the Control Hub.

(AN
The words "Firmware upload complete” should appear once the file has been uploaded successfully.

3. On the Driver Station, touch the three dots in the upper right hand corner to display a pop-up menu.

\N

4. Select Settings from the pop-up menu to display the Settings activity.

\N

5. On the Driver Station, scroll down and select the Advanced Settings item (under the ROBOT
CONTROLLER SETTINGS category).

\N

6. Select the Expansion Hub Firmware Update item on the ADVANCED ROBOT CONTROLLER
SETTINGS activity.

\N

7. If a firmware file that is different from the version currently installed on the Expansion Hub was
successfully uploaded, the Driver Station should display some information about the current firmware
version and the new firmware version. Press the Update Expansion Hub Firmware button to start the upda
process.

N

8. A progress bar will display while the firmware is being updated. Do not power off the Control
Hub/Expansion Hub during this process. The Driver Station will display a message when the update
process is complete.

&

Firmware Changelog

Version 1.8.2 (Latest Version)

e Improved USB recovery in case of fault event (e.g. ESD fault)

e Improved DC motor output linearity

Improved closed-loop control modes
e Improved 12C speeds
e Minor bug fixes

Download REV Hub Firmware Version 1.8.2

Version 1.7.2
e Fixes a bug where encoder counts would occasionally reset.

Download REV Hub Firmware Version 1.7.2

Version 1.7.0

e Fixes a bug where some I12C sensors can lock up the bus causing other additional performance issues.

e Added new status LED blink code:

e Blinking orange indicates the Hub is only powered over USB. In other words, turn on your main
power switch!

e Other minor performance tweaks.

Download REV Hub Firmware Version 1.7.0

Version 1.6.0
e Original Release

Download REV Hub Firmware Version 1.6.0

Updating Operating System

The Control Hub’s Operating System is field upgradable. New updates are released to incorporate fixes,
improvements, and new features as they are developed.

There are two ways you can update the Operating System. It is recommended to use the REV Hardware
Client as it will automatically notify the user if the Hub's Operating System is out of date, download the latest
OS, and install the OS on the device. The second way utilizes the FIRST Robot Controller Console. For
using the FIRST Robot Control Console, you will need to download the latest Operating System.

@ Updating the Operating System can take some time depending on the size of the update. Expect
the update to take approximately 5 minutes to fully complete and keep the Control Hub powered
during this process.

@ The following procedure works with Control Hubs with the part number REV-31-1595. For

https://www.revrobotics.com/content/sw/REVHubFirmware_1_08_02.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_07_02.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_07_00.bin
https://www.revrobotics.com/content/sw/REVHubFirmware_1_06_00.bin

support using the REV-31-1152 Control Hub vO please reach out to REV support
(support@revrobotics.com).

Using the REV Hardware Client

Steps

Control Hub

Power on the Control Hub, by plugging the 12V
Slim Battery (REV-31-1302) into the XT30
connector labeled “BATTERY” on the Control Hub
(REV-31-1595).

LRI CONTROL
B L

The Control Hub is ready to connect with a PC
when the LED turns green.

W/ CONTROL
Note: With Robot Controller Application versions . HUB

5.5 and below the light will blink blue every ~5
seconds. Please update to 6.0.

| FIRST

Plug the Control Hub into the PC using a USB-A to
USB-C Cable (REV-11-1232)

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the Ul
under the Hardware Tab. Select the Control Hub.

@ REV Hardware Client — [m] >

Hardware

Connected Hardware
Last check: 9:49 am

. § Control Hub REV-HCDEMO A
g use

https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-11-1232/

& Scan For Devices

Don't see your device? @ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Under Control Hub Operating
System select Download.

@ REV Hardware Client - O X

Hardware Downloads About

Connected Hardware = Control Hub REV-HCDEMO USB ®

Update P

and Manage

Last check: 9:49 am

-

Control Hub REV-HCDEMO

i

A

~ Control Hub Operating System

Current Version: 1.0.0 Out-of-Date A
Latest Version: 1.1.2-betal
Release Notes

@ Warning
Updating the Operating System will set the Access Point band
to 5GHz.

This should improve WiFi behavior, but older devices may not

be able to connect.You can switch back to the 2.4 GHz band
from the Program and Manage tab.

v Robot Controller App

Current Version: 5.4 Out-of-Date A
: Latest Version: 5.5
£ Scan For Dewc_es Release Notes .
Don't see your device? 7 @ Report an Issue
Once the OS has downloaded, select Update.
@) REV Hardware Client — m} s

Hardware Downloads About

Control Hub REV-HCDEMO UsB

Connected Hardware

Last check: 9:45 am

-

Control Hub REV-HCDEMO

v Control Hub Operating System

Current Version: 1.0.0 Out-of-Date £k
Latest Version: 1.1.2-betal
Release Notes

@ Waming
Updating the Operating System will set the Access Point band to
9GHz.

This should improve WiFi behavior, but older devices may not be
able to connect.You can switch back to the 2.4 GHz band from
the Program and Manage tab.

(Already Downloaded)

~ Robot Controller App

Current Version: 5.4 Out-of-Date £
Latest Version: 5.5
Release Notes

& Scan For Devices
Don't see your device? 4

@ Report an Issue

Keep the Control Hub powered while the upload finishes.

A successful upload will be denoted by the "Update Verification Succeeded" message highlighted in the

) REV Hardware Client

Hardware About

Downloads

Connected Hardware

Last check: 9:49 am

Control Hub REV-HCDEMO

§
y |

A

& Scan For Devices
Don't see your device?

Update

Control Hub REV-HCDEMO UsB

Program and Manage Backup and Restore

v

Control Hub Operating System

Current Version: 1.0.0
Latest Version: 1.1.2-betal
Release Notes

Out-of-Date A

© Warning

Updating the Operating System will set the Access Point band to
5GHz.

This should improve WiFi behavior, but older devices may not be
able to connect.You can switch back to the 2.4 GHz band from
the Program and Manage tab.

(Already Downloaded)
Cancel Update

Robot Controller App

Current Version: 5.4
Latest Version: 5.5
Release Notes

Out-of-Date A

@ Report an Issue

s

image below. Once the upload is successful the install will begin.

Keep the Control Hub powered while the update is installed. The Control Hub will reboot to complete the

update.

@) REV Hardware Client

Downloads About

Hardware

Connected Hardware

Last check: 9:49 am

ntrol Hub REV-HCDEMO

A

& Scan For Devices

Pirr® e i Arien

Update

Control Hub REV-HCDEMO

USB

1]

Program and Manage Ba

)

v

Control Hub Operating System

Current Version: 1.1.1
Latest Version: 1.1.2-betal
Release Notes

Out-of-Date £

Update verification succeeded. Rebooting device and installing
update.

(Already Downloaded)

Robot Controller App

Current Version: 5.4
Latest Version: 5.5
Release Notes

Hub Firmware

Out-of-Date £y

Current Version: unknown
Latest Version: 1.8.2
Release Notes

-

| LI 9TT FUdn UTTILG |

(@ Report an Issue ‘

When the OS update has completed a status message "Operating System update complete.” The status for
the Control Hub Operation System will also change to "Up-to-Date.”

@ When using OS 1.1.2 the Control Hub operates by default on the 5Ghz band. You may need to
update the Wi-Fi settings depending on what Driver Station device you are using.

@) REV Hardware Client — | *

Hardware Downloads About

Operating System update complete

x
, cwuve...o REV-HCDEMO USB ®
Update Program and Manage Backup and Restore

-

Connected Hardware

Last check: 9:49 am

v Control Hub Operating System

Current Version: 1.1.2-betal Up-to-Date

Release Notes

¥ Robot Controller App
Current Version: 5.4 Out-of-Date A
Latest Version: 5.5
Release Notes

v Hub Firmware

Current Version: unknown
Latest Version: 1.8.2
Release Notes

This cannot be updated
The Control Hub is not running version 5.5 or later of the Robot
£ Scan For Devices Controller app.

Don't see your device? W

-

(@ Report an Issue

Using the Robot Controller Console

Download the Latest REV Control Hub Operating System - Version 1.1.3

@ When updating from OS 1.1.1 or earlier to OS 1.1.2 or later, the Control Hub will switch to the 5
GHz band, regardless of the previous Wi-Fi band setting. Some devices do not support 5 GHz
Wi-Fi, and will not be able to connect to the Control Hub wirelessly while it is using the 5 GHz Wi-
Fi band. To switch to the 2.4 GHz band without needing a computer, see the Changing Wi-Fi
Band section.

Step Image

https://github.com/REVrobotics/REV-Software-Binaries/releases/download/chos-1.1.3/ControlHubOS-1.1.3.zip

Power on the Control Hub, by plugging the 12V
Slim Battery (REV-31-1302) into the XT30
connector labeled “BATTERY” on the Control Hub
(REV-31-1595).

The Control Hub is ready to connect with a PC
when the LED turns green. Note: the light blinks
blue every ~5 seconds to indicate that the Control
Hub is healthy.

Connect to the Control Hub's Wi-Fi Network. If itis
not renamed, the name will begin with either
“FIRST-“or “FTC-".

Open a browser and navigate to the FIRST Robot
Controller Console (type 192.168.43.1:8080 in the
navigation bar). Select the Manage Tab.

Scroll down to “Update Control Hub Operating
System” and press the “Select Update File” button.

Choose the latest version downloaded in Step 1
and press the “Update & Reboot” button.

Keep the Control Hub powered while the upload
finishes.

Control Hub

T Ll CONTROL
= HUB

W CONTROL % ‘
HUE ~5 Seconds

FTC-EvY3

. -~ g
Secured

FIRST. E:?;b:.i’;:u‘leer Blocks OnBotJava

Update Control Hub Operating System
Upload an Operating System update file for the REV Control Hub

Select Update File...

Update Control Hub Operating System
Upload an Operating System update file for the REV Control Hub

ControlHubOS-1.1.1.zip || Select Update File... | Update & Reboot

Please wall while upload finishes

https://www.revrobotics.com/rev-31-1302/
https://www.revrobotics.com/rev-31-1595/

Keep the Control Hub powered while the update is | —
installed. The Control Hub will reboot to complete
the update.

G coviror i -
: AUE ~5 Seconds

When the OS update has completed, the Control
Hub LED will switch from blue, back to its normal
blink pattern.

192.168.43.1:8080 says

Reconnect your computer to the Control Hub
network and verify that the update was a success.

Update installed successfully.

Control Hub Operating System Changelog

@ When updating from OS 1.1.1 or earlier to OS 1.1.2 or later, the Control Hub will switch to the 5
GHz band, regardless of the previous Wi-Fi band setting. Some devices do not support 5 GHz
Wi-Fi, and will not be able to connect to the Control Hub wirelessly while it is using the 5 GHz Wi-

Fi band. To switch to the 2.4 GHz band without needing a computer, see the Changing Wi-Fi
Band section.

Version 1.1.3 - Latest Version

e Adds support for new alternative built-in BHI260AP IMU on Control Hub

¢ Improves reliability of the Wi-Fi access point monitoring feature

Version 1.1.2

Adds support for Auto Channel Selection, where the Control Hub will pick the least busy Wi-Fi channel

on the selected Wi-Fi band when it starts up
Migrates all users to Auto Channel Selection on the 5 GHz band by default.

e Ifyou find that you are unable to connect to the Control Hub after updating, you should perform a Wi-
Fi Factory Reset by holding down the Control Hub's button as it boots, until you see a colorful light
sequence. That will reset the Wi-Fi settings and switch to the 2.4 GHz Wi-Fi band.

Allows switching the Wi-Fi band between 2.4 GHz and 5 GHz by holding down the Control Hub's button
when the hub has been booted for at least 20 seconds

e Ifversion 5.5 or later of the Robot Controller app is installed, the Control Hub's light will blink
magenta when the band is switched to 5 GHz, or yellow when the band is switched to 2.4 GHz.

Continuously monitors the Wi-Fi access point status, and will attempt to restart it if it goes down for any
reason

Continuously monitors the Robot Controller app, and restarts it if it crashes or hangs (requires version
6.1 or later of the Robot Controller app)

Allows the Robot Controller app to access the current Wi-Fi band and channel

Always backs up the FTC Robot Controller app data before itis uninstalled, in order to preserve Wi-Fi
settings

Improves Wi-Fi reliability
Prevents issue that could cause device to boot into recovery mode

Enables use of mouse button in recovery mode

Version 1.1.1

Fixed bug where Wi-Fi access point would sometimes fail to start after an Operating System update
Stopped the FtcAccessPointService Ul auto-starting on boot

Allowed Wi-Fi beacon rate to be changed by the FTC Robot Controller app

Version 1.1.0

Improved reliability of making changes to Wi-Fi access point settings
Updated to latest Realtek Wi-Fi driver

Increased Wi-Fi beacon rate to 6mbps, which reduces congestion when many Control Hubs are being
used in an area

Enabled 802.11w, which prevents Wi-Fi deauthentication attacks when the Control Hub is used with a
client device that also supports 802.11w

Added WifiLog.txt file for debugging and disconnection analysis
Improved reliability of FtcAccessPointService Ul (accessed through an HDMI monitor)
Added 5 GHz channels to FtcAccessPointService Ul

Ensured app data is not lost when installing a Robot Controller with a different signature via the Manage
webpage

Fixed issue where Wi-Fi SSID would sometimes be AndroidAP

Source Files for Control Hub OS:

e Linux Kernel Source

e U-Boot Source

Updating Robot Controller Application

The Robot Controller Application is periodically updated to incorporate fixes, improvements, and new
features as they are developed.

@ If you update your Robot Controller, then you should also update your Driver Station software to
the same version number.

There are two ways you can update the Operating System. It is recommended to use the REV Hardware
Client as it will automatically notify the user if the Robot Controller Application is out of date, download the
latest APK, and install the APK on the device. The second way utilizes the FIRST Robot Controller
Console. For using the FIRST Robot Control Console, you will need to download the latest version of the
Robot Controller Application from the GitHub repository.

@ The following procedure works with Control Hubs with the part number REV-31-1595. For
support using the REV-31-1152 Control Hub vO please reach out to REV support
(support@revrobotics.com).

Using the REV Hardware Client

Steps

Confrol Hub

Power on the Control Hub, by plugging the 12V
Slim Battery (REV-31-1302) into the XT30

e conrroL
connector labeled “BATTERY” on the Control Hub. 5 L5
Silm Battery B

W 9

The Control Hub is ready to connect with a PC
when the LED turns green.

Note: With Robot Controller Application versions
5.5 and below the light will blink blue every ~5

https://github.com/REVrobotics/kernel-controlhub-android
https://github.com/REVrobotics/uboot-controlhub-android
https://github.com/FIRST-Tech-Challenge/FtcRobotController
https://www.revrobotics.com/rev-31-1302/

seconds. In 6.0 and above the LED is solid green.

Plug the Control Hub into the PC using a USB-A to
USB-C Cable (REV-11-1232)

Startup the REV Hardware Client. Once the hub is fully connected it will show up on the front page of the Ul
under the Hardware Tab. Select the Control Hub.

Q F

Hardware | A

Connected Hardware

Control Hub REV-HCDEMO
E USB A

& Scan For Devices

Dont see your device? @ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Under Robot Controller App select
Download.

Once the app has downloaded, select Update.

@ REV Hardware Client — [m| s

Hardware Downloads About

Control Hub REV-HCDEMO UsB

Connected Hardware

0O =

Update Program and Manage Backup and Restore

Last check: 5:08 pm

-

Control Hub REV-HCDEMO

.
§m= usB A

~ Control Hub Operating System

Current Version: 1.1.2-betal Up-to-Date
Release Notes

v Robot Controller App

Current Version: 5.4 Out-of-Date £
Latest Version: 5.5
Release Notes

(Already Downloaded)

~ Hub Firmware

Murrant Varcinn: nnbnaun

https://www.revrobotics.com/rev-11-1232/

UL VEISIUIL UIREIU Y

Latest Version: 1.8.2
Release Notes

This cannot be updated.
The Control Hub is not running version 5.5 or later of the Robot
Controller app
& Scan For Devices
Don't see your device? -

-

@ Report an Issue

When the Robot Controller Application update has completed a status message "Robot Controller app
update complete.” The status of the Robot Controller App will also change to "Up-to-Date."

@ REV Hardware Client - [m| X

Hardware Downloads About

Robot Controller app update complete. X

(C— i s UsB

i

Connected Hardware

Update Program and Manage Backup and Restore

Last check: 5:08 pm

v Control Hub Operating System

Current Version: 1.1.2-betal Up-to-Date
Release Notes

Control Hub REV-HCDEMO

]

¥ Robot Controller App

Current Version: 5.5 Up-to-Date

Release Notes

¥ Hub Firmware
Current Version: unknown
Latest Version: 1.8.2
Release Notes

This cannot be updated.
The Control Hub is not running version 5.5 or later of the Robot Controller

app.

£ Scan For Devices
Don't see your device? -

-

@ Report an Issue

Using the Robot Controller Console

Download the Latest Robot Controller APK - FtcRobotController-release v8.0

Updating the Robot Controller App

Click on the FtcRobotController-release.apk link in the repository to access the Robot Controller file.

N

Click on the Download button to download the Robot Controller app as an APK file to your computer.

N

https://github.com/FIRST-Tech-Challenge/FtcRobotController/releases/tag/v8.0

On the Manage page, click on the Select App button to select the Robot Controller app that you would like
upload to the Control Hub.

& An Update button should appear if an APK file was successfully selected.

Click on the Update button to begin the update process.

(AN
During the update process, if the Control Hub detects that the digital signature of the APK that is being
installed is different from the digital signature of the APK that is already installed, the Hub might prompt you

to ask ifitis OK to uninstall the current app and replace it with the new one.

This difference in digital signatures can occur, for example, if the previous version of the app was built and
installed using Android Studio, but the newer app was downloaded from the GitHub repository.

Press OK to uninstall the old app and continue with the update process.

N

If the update process had to uninstall the previous version of the Robot Controller app, the network name
and password for the Control Hub will be reset back to their factory values. If this happens, then you will
need to reconnect your computer to the Control Hub using the factory default values.

N

When the update process is complete and you have successfully reconnected your computer to the Contrc
Hub's network, you should see an "installed successfully" message on the Manage web page.

Updating the Driver Hub

The Driver Hub has two pieces of software that are field upgradable, the Driver Hub Operating System and
the Driver Station Application. Both pieces of software are updatable either through the REV Hardware
Client or directly on the Driver Hub with the Software Manager.

Driver Hub Software Manager

The Driver Hub has a Software Manager Application pre-installed for updating the Driver Hub. Open the
application by pressing on the Software Manager icon. Select the Update All button to update all the
software that requires updating.

(1) Make sure the Driver Hub is connected to a Wi-Fi network with access to the internet to download
and install the latest software.

9:54 AM @ < 0100%

Software Manager - Available Updates Q Q :

UPDATE ALL

- Driver Hub 0S

m Software Manager

@ The updates can take several minutes to complete. Make sure the Driver Hub is charged or plug
in the Driver Hub during the updating process.

REV Hardware Client

Startup the REV Hardware Client and connect the Driver Hub to the PC using the USB-A to USB-C cable.
Once the Driver Hub is connected it will show up on the front page of the Ul under the Hardware Tab. Select

the Driver Hub.

| @ REV Hardware Client - O x

Hardware Downloads About

Connected Hardware

Driver Hub
) -

Last check: 10:15 am

£ Scan For Devices

Don't see your device? @ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Any software the needs updating will
have an Out-of-Date notification. Pressing the update button allows the REV Hardware Client to download
the software update and install on the Driver Hub.

| G REV Hardware Client — O K

Hardware Downloads About

Connected Hardware ° Driver Hub
Upcte
Last check: 10:15 am
v Driver Hub Operating System
Driver Hub
- usﬂer . Current Version: 1.0.0 Out-of-Date 4

Latest Version: 1.0.1

v~ Driver Station App

Current Version: 6.2 Up-to-Date
Latest Version: 6.2
Release Notes

Update To: | Latest Version: 6.2 &

(Already Downloaded)

¥ Scan For Devices

Don't see your device? @ Report an Issue

@ Once all the Out-of-Date notifications are cleared the Driver Hub is fully up to date.

Accessing Log Files

When troubleshooting problems with the REV Control System log files provide indicators of what the status
of the Control Hub or Expansion Hub were during an event. Often the first log that is considered is the Robot
Controller log, as they are relatively easy to decipher and can be pulled from the Control Hub or Robot
Controller. While working through the troubleshooting process looking through the XML files, Wi-Fi Log, or
Updater Logs in addition to the Robot Controller logs help to paint a full picture.

There are a few ways to access the log files depending on if you are looking to troubleshoot or downloading
the log files for REV support to help.

Log Viewer - REV Hardware Client

The REV Hardware Client has a Log Viewer that makes it easier to parse overall log files. Through a series
of filters, tags, and a search function makes it easy to see what is happening on the Control Hub or Driver
Hub during any opmode run.

To access the Log Viewer, head to the Utilities Tab.

@ REV Hardware Client — O X

Hardware IU:iIi‘[ies I Downloads About

Connected Hardware
Last check: 12:53 pm

& Scan For Devices

Don't see your device? @ Report an Issue

From there you can select and open log files for connected devices or for ones downloaded onto the
computer.

@ REV Hardware Client

Hardware Uiilities Downloads About

= Select Log File Loaded Control Hub REV-DEMO - FIRST/matchlogs/Match-0-HelloRobot_TeleOp.txt B

Filters: Y Q Search... Message ¥ iﬁ | RegEx
Selected Columns: Line Timestamp || ProcessID | ThreadID Type Tag
. TIMESTAMP TYPE TAG MESSAGE

=

@ Report an Issue

‘ (1) For more information on the Log Viewer check out the REV Hardware Client User's Manual.

Downloading Log Files

When sending logs to REV Support use the REV Hardware Client. The Client will zip all relevant log files,
collect some additional information from a form, and then send them to REV for diagnosis. When running
through the troubleshooting process at an event, physically connecting to a Control Hub (REV-31-1595) and
using the file search of the computer allows access to the files. Alternatively connecting to the Robot
Controller Console allows downloading the logs through the manage tab.

https://docs.revrobotics.com/rev-hardware-client/
https://www.revrobotics.com/rev-31-1595/

REV Hardware Client

1. Provide 12v Power to the Control Hub.

2. Plug the USB-C Cable into the top board of the Control Hub and into a PC with the REV Hardware
Client installed.

3. Select the Control Hub from the Connect Hardware.

4. Click the "Send Diagnostics to REV" Button

@) REV Hardware Client

Hardware Downloads About

Connected Hardware §EIQE Control Hub FTC-aEly

Update Program and Manage Backup and Restore Send Diagnostic Data to REV
Last check: 11:48 am

: v Control Hub Operatin stem
¢ Control Hub FTC-akEly P 9 Sy

~ ¥ USB Current Version: 1.1.2 Up-to-Date
Release Notes

E

v Robot Controller App

Current Version: 6.2 Up-to-Date
Release Notes

v~ Hub Firmware

Current Version: 1.8.2 Up-to-Date
Release Notes

& Scan For Devices
Don't see your device?

-

@ Report an Issue

@ There is a short form to fill out with additional information to help REV Support troubleshoot the
issue.

File Search

Using a PC

@ Mac computers do not support MTP natively, the protocol used to browse files on Android
devices. You need to use the Android File Transfer app: https://www.android.com/filetransfer/

Windows devices will operate without the need for an additional application.

https://www.android.com/filetransfer/

1.Provide 12v Power to the Control Hub.

2.Plug the USB-C Cabile into the top board of the Control Hub and into a PC

3.Navigate to This PC\Control Hub v1.0\Internal shared storage. Robot Controller, Wi-Fi, and Updater logs
can be found on this level of the file hierarchy.

@ The logs are all text files that can either be open via Notepad++ and looked over or sentto REV
Support via an email to be further troubleshot.

4.While in the This PC\Control Hub v1.0\Internal shared storage location navigate to a folder called "FIRST."
The folder should have XML files with a naming convention that mirrors the names of the robot configuration.

Using a Mac

1. Download the Android File Transfer App on your MAC

2. Open Android File Transfer.dmg

3. Drag Android File Transfer to Applications

4. Use the USB-C to USB-A cable that came with your Control Hub (or other relevant Android Device)

5. Double click Android File Transfer

6. Navigate to Control Hub v1.0\Internal shared storage. Robot Controller, Wi-Fi, and Updater logs can be
found on this level of the file hierarchy.

@ The logs are all text files that can either be open via Notepad++ and looked over or sentto REV
Support via an email to be further troubleshot.

7. While in the Control Hub v1.0\Internal shared storage location navigate to a folder called "FIRST." The
folder should have XML files with a naming convention that mirrors the names of the robot configuration.
Robot Controller Console

1.0pen the Robot Controller Console
2. Select the Manage page
3. Press the Download Logs button

N

Could not load image

4. Check for the robotControllerLog.txt in the Downloads Directory of the Computer
5. Open the Logs via a text editor, like Notepad++, to view the contents of the log or send the logs to REV

Support

AN

Could not load image

Programming

Hello Robot - Introduction to Programming

Hello Robot - Choosing Your Path

In almost every programming class, the first lesson taught is some variation of the Hello World code. Hello
World, often a one to two line segment of code, displays the line Hello World when the code is built and run.
Though this code may seem like a very simple introduction to programming, it introduces several crucial
concepts in programming. Hello World is the first lesson many students get in the logic of programming, as
well as, language specific syntax. But, most importantly, the simplicity of Hello World allows it to be a
testing point for the system used to execute the code.

Though itis possible to display Hello World or Hello Robot on an Android Device in the REV Control
System, it doesn't serve quite the same purpose. In order to properly consider syntax, logic, and testing in

the REV Control System; consideration has to be paid to a multitude of system elements like actuators and
sensors. For that reason the Hello World lesson has been edited into Hello Robot.

By the end of this guide users should understand how to configure their robot and test their robot
mechanisms. The following outline walks through the flow and goals of this section. Choose the path that

best fits your needs.

@ If you are new to programming or the REV Control System we recommend that you follow through
the whole guide to learn how to properly utilize the system.

Section

Introduction

Configuration

Test Bed: Introduction

Sub Section

Programming Tools

Op Modes

Importance of Configuration

Configuring Common Hardware

Common Errors in Hardware

Mapping

Test Bed

Goals

There are three programming
tools for the REV Control
System. Learn about the
benefits of each option and
choose the best option to fit you
needs. Section also includes
instructions on how to access
the option you choose.

What are Op Modes? Learn
about the different types of Op
Modes in the REV Control
System

What is Configuration and why
should you configure before yc
begin to program?

Learn how to configure
commonly used hardware like
motors, servos, and sensors.

Understand and solve the
common errors that occur whel
configuring and mapping
hardware.

Why creating a test bed of
actuators and sensors can helj
with programming. This test be

Test Bed: Blocks

Test Bed: OnBot Java

Testing Basics

Creating an Op Mode

Programming Essentials

Programming Actuators

Programming Sensors

Creating an Op Mode

Programming Essentials

Programming Actuators

Programming Sensors

or something equivalent, will b
Leachinvio)long 8¢ dtiensost
important aspects of Software
Development and how it differs
from troubleshooting.

Focuses on how to navigate th
Blocks interface and create an
op mode.

Breaks down the structure and
key elelments needed for an o
mode, as well as some of the
essential components of Block
and programming logic.

How to code servos and motor
This section walks through the
basic logic of coding actuators
controlling actuators with a

gamepad, and using telemetry.

How to code a digital device.
The section focuses on the
basic logic of coding a digital
device, like a REV Touch
Sensor.

Focuses on how to navigate th
OnBot Java interface and crea
an op mode.

Breaks down the structure and
key elelments needed for an o
mode, as well as some of the

essential components of Java.

How to code servos and motor
This section walks through the
basic logic of coding actuators
controlling actuators with a

gamepad, and using telemetry.

How to code a digital device.
The section focuses on the
basic logic of coding a digital

Robot Control

Robot Navigation: Blocks

Robot Navigation: OnBot Java

Arm Control: Blocks

Create a Basic Robot

Drivetrain Basics

Basics of Programming
Drivetrains

Elapsed Time

Encoder Navigation

Basics of Programming
Drivetrains

Elapsed Time

Encoder Navigation

Basics of Programming an Arm

device, like a REV Touch
Sensor.

Introduces a potential robot to
work with as well as the
configuration file used in the
following sections.

Differences between differentie
and omnidirectional drivetrains
and their affect on teleoperatec
control types.

What to consider when
programming drivetrain motors
and how to apply this to an
arcade style teleoperated
control.

Learn how to use the concept «
elapsed time to create time
controlled autonomous
programs.

Learn how to use encoders to
create more consistent
autonomous pathing.

What to consider when
programming drivetrain motors
and how to apply this to an
arcade style teleoperated
control.

Learn how to use the concept «
elapsed time to create time
controlled autonomous
programs.

Learn how to use encoders to
create more consistent
autonomous pathing.

Introduction to coding an arm fi
teleoperated control and
working with a limit switch

Programming an Arm to a
Position

Using Limits to Control Range of
Motion

Arm Control: OnBot Java

Basics of Programming an Arm

Programming an Arm to a
Position

Using Limits to Control Range of
Motion

Programming Tools

Using motor encoders to move
an arm to a specific position,
such as from 45 degrees to 90
degrees.

Working with the basics of arm
control, motor encoder, and lim
switches to control the range o
motion for an arm.

Introduction to coding an arm fi
teleoperated control and
working with a limit switch

Using motor encoders to move
an arm to a specific position,
such as from 45 degrees to 90
degrees.

Working with the basics of arm
control, motor encoder, and lim
switches to control the range o
motion for an arm.

Choosing the appropriate programming tool or language is one of the most crucial decisions a user can
make. In the REV Control System there are three programming tools to choose from: Blocks, OnBot Java,
and Android Studio. Each tool comes with different benefits and difficulty levels.

Basic Intermediate

Blocks Onbot Java

Advanced

Android Studio

The programming tools for the Software Development Kit (SDK) were chosen as a means of giving users
the ability to choose among alternatives, but also as a means of allowing users to naturally move from basic
to advanced programming. A user can reasonably start with Blocks and build their way up to Android Studio.
In fact, this is often our suggestion to rookie users. Android Studio is a very powerful tool but, as you are
learning the basics of programming, has the potential to be a hindrance rather than a help.

Review the following sections to learn about each programming tool and the benefits that come with it. Once
you are done reviewing make an educated choice about what tool will work best for you!

Blocks

The Blocks Programming Tool is a visual, programming tool that lets programmers uses a web browser to
create, edit and save their op modes. Blocks, like other scratch based programming tools, is a collection of
preset code snippets that users can drag-and-drop into the appropriate code line.

FIR! OnBotJava Manage

Save Op Mode | Exportto Java || Download Op Mode | Download Image of Blocks

Op Mode Name: Helloworid TeleOp [T [Group: ¥ Enabled ¥ Show Java

inearOpMode

moamepas | (i
P Actuators Put initialization blocks here. tloop.opmode . LinearOptiode;

P Sensors import con tloop.opmode. TeleOp;
. (||l HelloWorld_TeleOp & waitForStart import
P Other Devices — - = 2 inpart <o
» Android (&) if .-l HelloWorld_TeleOp [opModelsActive @Teleop(name = "Hellokorld Teleop (8locks te Java)”, group = ")
» Utilitios do ‘ ul nlbleeR=INEE public class HelloWorld_TeleOp extends LinearOpMode {
Logic repeat (RS | call HeIIoWorId_TeIeOplopModeIsActive] private Servo test_servo;
Loops do " Put loop blocks here. e
Math Eét e e 'm to 05 * This function is executed when this Op Mode is selected from the Driver Station.
Text = . B wy

@override
public void runOptode() {
test_servo = hardwareMap.get(Servo.class, "test_servo");

Lists
Variables

FUTERTE // Put initializstion blocks here.
Miscellaneous waitForstart();
if (optodeIsactive()) {
/7 Put run blocks here.
while (optodelsActive()) {
// Put loop blocks here
test_servo.setPosition(e.5);
¥
¥
}
i

Blocks was created to cater to users who have little to no experience programming. Unlike OnBot Java or
Android Studio, Blocks works to insulate and protect users from the complexities of the SDK. The Blocks
interface accomplishes this by hiding, or abstracting, some of the more complex overhead the system
requires, like calls to specific libraries or classes. The code snippets make those connections and
assumptions for the user.

One of the other major benefits of Blocks are the built-in features that allow users to naturally transition from
little to no programming knowledge to a basic understanding of Java. Blocks teaches users the logic of
programming, while protecting them from syntax mistakes. As users gain more confidence and ability they
can use the "Show Java" option. "Show Java" allows users to see the Java syntax that corresponds with
each Block that is added to the code.

Summarization of Benefits

Hides complexities from the user allowing them to focus on learning the logic

Has an option to Show Java which allows users to see what the corresponding syntax would be in Java

Web-based interface - accessible on most devices

Saves directly to the robot

Just as powerful as OnBot Java

Accessing Blocks

/\ This section assumes that you have already gone through the steps of setting up your REV
Control System. For more information on how to setup your control system check out the Getting
Started with the Control Hub guide.

This section also assumes that you have a JavaScript enabled web browser.

1. Go to Wi-Fi Settings, on a Windows 10 Computer, by clicking on the Wi-Fi symbol.

2. Once the list of available Wi-Fi networks in the vicinity is displayed select the network that matches the
name of your Wi-Fi access point.

Enter the password that you set when setting up the Control System.
Once connected, open a JavaScript enabled browser (FIRST recommends Google Chrome).

Go to IP Address http://192.168.43.1:8080

I T

At the top of the Robot Controller Console Page, there should be 3 menu options: Blocks, OnBot Java,
and Manage. Choose Blocks.

@ Passwords are case sensitive. If you do not remember your password, use the Hardware Client to
check the Program and Manage section of the Robot Controller Console

OnBot Java

A text-based programming tool that lets programmers use a web browser to create, edit and save their Java
op modes.

Blocks Manage
o O + 2 @O <>HR testjava %X <>HR_mapTestjava x [Welcome %
- -

package org.firstinspires.ftc.teamcode;
Project Files
~ BB org.firstinspires.fic.teamcode
@ HR_mapTest java

[@ HR_test java

1

2

3 dmport com.gualcomm.robotcore,eventloop.opmode.Telelp;
4 dmport com.gualcomm.robotcore,hardware.TouchSensor;

5 dimport com.qualcomm.robotcore.eventloop.opmode.LinearOpiode;
6 import com.qualcomm.robotcore.hardware.Blinker;

7 dimport com.qualcomm.robotcore.hardware.Gyroscope;

8 dimport com.qualcomm.robotcere.hardware,ColorSensor;

9 dmport com.qualcomm.robotcore.hardware.DcMotor;

1@ Jmport com.gualcomm.robotcore.hardware.Servo;

11 dimport com.qualcomm.robotcore.hardware.DigitalChannel;

12

13 @TeleOp

14

15 public class HR_test extends LinearOpMode{

16 private DigitalChannel test_touch;

17 private DcMotor test_motor;

18

19

20 @0verride

21 public void runOpMode() {

22 // Get the touch sensor and motor from hardwareMap

23 test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");
24 test_motor = hardwareMap.get(DcMotor.class, "test_moto");

25

26 test_touch.setMode (DigitalChannel.Mode.INPUT);

27

28 // Wait for the play button to be pressed 6
29 waitForStart();

Build started at Tue Sep 29 2020 14:58:06 GMT-856@ (Central Daylight Time)

Build SUCCESSFUL!

Build finished in 1.5 seconds

OnBot Java is great for programmers with basic to advanced Java skills who would like to write text-based
op modes. OnBot Java shares some of insulative properties of Blocks, but gives users access to the more

complicated elements of the SDK libraries.For instance, OnBot requires users to make calls to classes like
the hardwareMap, which are hidden within the Blocks code snippets.

OnBot Java shares a web-based interface with the Blocks Programming tool. The web-based model is easy
to access on most devices to make code change and reduces the need to have one set device for code
changes.

Summarization of Benefits

Access to more complicated library classes for more advance programming
Reduces coding issues by hiding complex classes from the user

Allows users to learn Java in simplified interface

Web-based interface - accessible on most devices

Saves directly to the robot

Accessing OnBot Java

/\ This section assumes you have already gone through the steps of setting up your REV Control
System. For more information on how to setup your control system check out the Getting Started
or Managing the Control System sections of the Control System Guide.

This section also assumes that you have a JavaScript enabled web browser.

1. Go to Wi-Fi Settings, on a Windows 10 Computer, by clicking on the Wi-Fi symbol.

2. Once the list of available Wi-Fi networks in the vicinity is displayed select the network that matches the
name of your Wi-Fi access point.

Enter the password that you set when setting up the Control System.
Once connected, open a JavaScript enabled browser (FIRST recommends Google Chrome).

Go to IP Address http://192.168.43.1:8080

S T

At the top of the Robot Controller Console Page, there should be 3 menu options: Blocks, OnBot Java,
and Manage. Choose OnBot Java

@ Passwords are case sensitive. If you do not remember your password, use the Hardware Client to
check the Program and Manage section of the Robot Controller Console

Android Studio

An advanced integrated development environment for creating Android apps. This tool is the same tool that
professional Android app developers use. Android Studio is only recommended for advanced users who
have extensive Java programming experience.

@ Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help = [o) 100% @ Sun12:29 PM
g

_» PushbotTeleopPOV_Linear.java - ftc_app - [~/Documentsjworkspace/ftctechnh/ftc_appl
DHO ¢ XPH QR ¢ > A (RTamede- | P 4 H i G B L 82 L ?
Gft:_ann} Jor | Fﬁckobutcmoller:} | srt:} [main \;] javaj} 1 org | [firstinspires ,‘ Ea ﬂc:‘s Ea ruhotcanlroller} E1 extemalr_: [51 samples) (£ PushbotTeleopPOV_Linear :}

i Android ~ €3 & | - 1= (© PushbotTeleopPOV_Linearjava
= FtcRobotController PushbotTeleopPOV_Linear
= v CiTeamCode 46 # Al device access is managed through the HardwarePushbot class.
e » [Imanifests 47 # The code is structured as a LinearOpMode
v [java 48 *
I S 49 # This particular OpMode executes a POV Game style Teleop for a PushBot
[v 5 e,
g Edorgfirstinspires.ftc.teamcode 50 « In this mode the left stick moves the robot FWD and back, the Right stick turns left and right.
; &) readme.md 51 #* It raises and lowers the claw using the Gampad Y and A buttons respectively.
:“,‘ » [ijnilibs 52 * It also opens and closes the claws slowly using the left and right Bumper buttons.
» DCares 53 *
v » (2 Gradle Scripts 54 # Use Android Studios to Copy this Class, and Paste it into your team's code folder with a new name.
F 55 * Remove or comment out the @Disabled line te add this ppmode to the Driver Station OpMode list
4 56 */
g 57
] 58 @Teledp(name="Pushbot: Teleop POV, group="Pushbot")
® 59 @lgisabled
60 public class PushbotTeleopPOV_Linear extends LinearOpMode {
61
62 /# Declare OpMode members. +/
63 HardwarePushbot robot = new HardwarePushbot()}; // Use a Pushbot's hardware
64 // could also use HardwarePushbotMatrix class.
65 double clawDffset =8 // Servo mid position
66 final double CLAW_SPEED = 0.82 ; [/ sets rate to move servo
67
68 @0verride
69 @f public void runOpMode() {
78 double left;
71 double right;
= 72 double max;
= 73
'é 74 /% Initialize the hardware variables.
i 75 * The init() methed of the hardware class does all the work here
i 76 *f
* 77 robot. init{hardwareMap);
78
» 79 /f Send telemetry message to signify robot waiting;
= 8@ telemetry,addData("Say”, "Hello Driver"); £
5 81 telemetry.update();
2= 82
% B3 /f Wait for the game to start (driver presses PLAY)
= 84 waitForStart();
" 85
[F 0: Messages Terminal W 6: Android Monitor = TOoDO 2} Event Log [¥] Gradle Consale

E Class 'PushbotTeleopPOV_Linear' is never used

60:14 LF# UTF-B: Context: <no contexts> B

alpess ()

|2papy plospuy 9

lﬂEl

Android Studio allows programmer with an advanced understanding of Java a more powerful development
environment to work in. It offers enhanced editing and debugging features not available with OnBot Java or
Blocks. It also allows programmers the ability to work with 3rd Party libraries not included within the SDK.

However, Android Studio is not a web-based software and will need a dedicated laptop to run on.

Summarization of Benefits

Access to more complicated library classes for more advance programming

Enhanced editing and debugging features

Enables access to 3rd Party Libraries

Accessing Android Studio

To learn about how to properly download and work with Android Studio please visit the FTC Wiki.

/\ FIRST Global does not have support for Android Studio.

Op Modes

Op modes (or operational modes) are computer programs that are used to customize or specify the

https://github.com/ftctechnh/ftc_app/wiki/Android-Studio-Tutorial

behavior of a robot. The Robot Controller, either the Control Hub (REV-31-1595) or an Android device
paired with an Expansion Hub (REV-31-1153), stores and executes op modes. The Driver Station allows
users to select from any of the op modes stored on the Robot Controller and initialize, start, or stop the op
modes.

In the SDK there are two types of op modes: autonomous and teleoperation. Both types of op modes have
initialization, start, and stop features on the Driver Station phone. Each feature corresponds with different
types of code segments that will be discussed in detail in the programming tool specific Test Bed sections of
this document.

The main difference between autonomous and teleoperation op modes is how they show up in the Driver
Station application. Autonomous op modes show up in a drop down menu on the left side of the Driver
Station application. The Driver Station assigns a 30 second timer to autonomous op modes. If the
autonomous op mode is not manually stopped prior to the end of the 30 seconds the Driver Station will
automatically stop the code. TeleOp op modes will appear in a drop down menu on the right side of the
Driver Station application. These op modes will run until they are manually stopped.

Itis also worth noting that in the SDK op modes can be linear op modes or iterative op modes. This guide
focuses on Linear op modes, which execute code lines in a sequential order. In order to repeatedly call
actions within in a linear op mode, a loop function must be used. This topic will be discussed in further detail
as you follow along this guide.

Hello Robot - Configuration

Configuration is one of the most commonly misunderstood, or forgotten, steps required for programming a
robot. This section sets out to explain the importance of configuration and common misconceptions of
configuration by answering the following questions:

1. Whatis configuration?

2. How do you configure hardware elements?

3. What are common issues that are caused by a problem with the configuration file?

The Importance of Configuration

While every REV Control Hub is the same, the robots being controlled by the Control Hub are not. Each
Control Hub has the same number of motor ports, servo ports, digital ports, and the like, but how each user
utilizes these ports varies from system to system. For instance, a Color Sensor V3 may be plugged in to I12C
Bus 1 on one users Hub, but another user might use the same bus to host a 2m Distance Sensor.

The Control Hub knows that there is an 12C device attached to the port. But it doesn't naturally have the
information needed to translate that information to an Op Mode or tell the op mode which drivers need to be
accessed in order to use this sensor. A user needs to provide additional information, so that the internal

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

software in the Hub can take information from the Op Mode and apply it to a corresponding external
hardware port and vice versa. This process is known as hardware mapping. Hardware mapping is a two
step process that includes: the creation of a readable file known as a configuration file and calls to the

lhavdiarnuvn rmanmm wnnithin A Mia NMAAA
The Configuration File

The configuration file is a readable file created by the user through the Driver Station Application. When
creating a configuration file users are required to assign each device to a port, select the type of device itis
from options provided by the SDK, and give it a unique name.

@ In programming its important to distinguish between variables, by giving each variable a different
name.

Once a configuration file is saved or activated the robot will restart. This restart is so the SDK can read the
file, determine what devices are present, and add the devices to the hardwareMap class.

The Hardware Map

On the user-created op mode side of the fence is the hardwareMap class. This class is where the
information created in the configuration is available for use in Blocks, OnBot Java, or Android Studio code.

The level of access or interaction a user has with the hardwareMap class depends on which programming
tool they are using. Since Blocks is a collection of predetermined code snippets, it creates references to the
hardwareMap whenever a variable code snippet, corresponding to an external hardware, is first referenced.
However, with Onbot Java and Android Studio the reference to the hardwareMap requires that a variable be
created and assigned to an external hardware unit within the hardwareMap

@ Information on referencing the hardwareMap class in Java will be further explained in the Test
Bed - OnBot Java section.

Configuring Common Hardware Devices

Accessing the Configuration Utility

revdemo-ds
3.0%

User 1 User 2

Settings

Restart Robot

<No Config Set>

Configure Robot

Program & Manage

v

Self Inspect
About
Exit

Select the menu in the stop right corner of the
Driver Station. Then select Configure Robot.

Status : Robot is stopped

Active Configuration: <No Config Set>

New

Available configurations: o

In the Available configurations page, select New.

In the USB Devices in configuration page select Active Configuration: (unsaved) <No Config Set>

the Control Hub Portal.
) o Save @ Cancel @ Scan o
Note: If you have an Expansion Hub it will appear

Press the 'Save' button to persistently save the current
configuration

Press the 'Scan' button to rescan for attached devices

as an Expansion Hub Portal.

USB Devices in configuration: o
ACTR/E Configuration: : (unsaved) <No Config Set>
Within the Hub Portal select the device you want to
i
configure. In this use case, select the Control Hub.
_ _ .)Control Hub Portal
Note: if you have an Expansion Hub connected to (embedded)
a Control Hub, the Expansion Hub will also appear
Control Hub

as a configurable device in the portal.

Active Configuration: (unsaved) <No Config Set>

Cancel

. Control Hub

Motors

Servos

Digital Devices
Analog Input Devices
12C Bus 0

|12C Bus 1

This will bring you to the page shown in the image. IZ2C Bus 2
From here you can configure motors, servos and 12C Bus 3
sensors that you are using. Follow through the rest

of the guide to figure out how to configure devices

that will be used in the Test Bed section.

Note: The way that Digital and Analog devices are

configured versus how 12C devices are configure

differ significantly. This is because each physical

I2C portis a different bus that can host multiple _
different sensors. For more information on the

different types of sensors check out the sensors
section.

Configuring Hardware

The following section will show how to configure components that will be used in the Test Bed. The
hardware type and names have been chosen in consideration for the Hello World lesson plan. Users should
heed notes within the steps to consider when creating configuration files for other instances.

Motor

Configuring a Motor

Active Configuration: (unsaved) <No Config

Done @ Cancel

. Control Hub

Motors

Servos

Digital Devices
Select Motors.

Analog Input Devices

I12C Bus 0

I12C Bus 1

12C Bus 2

I12C Bus 3

The Motor page will allow you to configure all four
motor ports on the Hub. On Port 0 open the drop

down menu and select REV Robotics Core Hex

M8t8¥in your configuration file you should
configure the motor ports to the type of motor you
are using.

Name the motor test_motor. Select done.

Note: remember when naming hardware in the
configuration file that the REV Control System is
Case Sensitive.

Servo

Configuring a Servo

Select Servos.

Port Attached

0 Nothing

NeveRest 20 Gearmotor

NeveRest 3.7 v1 Gearmotor

Port Attached

NeveRest 40 Gearmotor
0 Nothing -

\ NeveRest 60 Gearmotor

REV Robotics 20:1 HD Hex Motor

Active Configuration: (unsaved) <No Config

Done @ Cancel

Port Attached

0 ‘ REV Robotics Core Hex Mot..

test_motof

Motor name

1 Nothing ~

Motor name

Active Configuration: (unsaved) <No Config

Done @ Cancel

. Control Hub

Motors

Servos

Digital Devices
Analog Input Devices
12C Bus 0

12C Bus 1

12C Bus 2

12C Bus 3

The Servo page will allow you to configure all six
servo ports on the Hub. On Port 0 open the drop

Port Attached

down menu and select Servo. —— 0
Note: REV Servos can be configured as a Servo o [o : J:Em:‘m”:“
or a Continuous Rotation Servo. The type of ﬂ | v
device a servo is configured as should correspond sero

with the mode the sensor is in. For more
information on Sensor modes visit the Sensor
section.

Name the servo test_servo. Select done.

T Nothing - 2

Servo name Servo name

3 Nothing

Servo name

Active Configuration: (unsaved) <No Config

Port Attached

0 ‘ Servo -
Note: remember when naming hardware in the
) . . i test_servo
configuration file that the REV Control System is ;
. Servo name
Case Sensitive.
1 Nothing v
Servo name

Digital Device

Configuring a Digital Device

Select Digital Devices.

https://docs.revrobotics.com/15mm/actuators/servos

The Digital Devices page will allow you to
configure all eight digital ports on the Hub. On Port
1 open the drop down menu and select Digital
Device .

Note: Touch Sensors must always be configured
on odd number ports. Check out the Digital Sensor
section for more information.

Note: Touch Sensors can be configured as a REV
Touch Sensor or a Digital Device. In the FTC SDK
the type of device itis configured as changes the
classes and methods that can be used.

Name the motor test_touch. Select done.

Note: remember when naming hardware in the
configuration file that the REV Control System is
Case Sensitive.

12C Device

Configuring an 12C Device

Active Configuration: (unsaved) <No Config

Done @ Cancel

Control Hub

Motors

Servos
Port Attached 1 Nothing -
0 Nothing b Nothing

Ces [aouomi]

e | a
1 Nothing v E

R D REV Touch Sensor

Device name 3 Nothing -

12C Bus 1

4 Nothin -
|12C Bus 2 —

i2C Bus 3

Active Configuration: (unsaved) <No Config

Port Attached

0 ‘ Nothing v ‘
Device name

1 ‘ Digital Device - ‘
test_touch
Device name

Select12C Bus 0. Active Configuration: (unsaved) <No Config

Done @ Cancel

. Control Hub

Motors
Servos

Digital Devices

Active Configuration: (unsaved) helloRob(

Port Attached

Select Add.
0 ‘ REV Expansion Hub IMU ~ + ‘
Note: Each I12C Bus can host more than one 12C
sensor as long as the 12C addresses do not conflict. . \imu
Bus 0 will always host the internal IMU. For more Device name
information on 12C sensors visit the 12C section.

Port Attached

On Port 1, which was created in the previous step,
open the drop down menu and select REV Color
Sensor V3.

0 REVExpansion Hub IMU

imu

Device name

1 Nothing

0 REVExpansionHubIMU v MR IR Seeker v3

imu “ MR Range Sensor

Note: If you are using Color Sensors V1 or V2 O
select REV Color/Range Sensor. For more ! ’
information on configuring with the REV Color Devosrame B

REV Expansion Hub IMU

Sensors visit the Color Sensor Datasheets.

navX Micro

190 DovieaLSunohranaua).

Name the motor test_color. Select done.

Note: remember when naming hardware in the
configuration file, that the REV Control System is
Case Sensitive.

https://docs.revrobotics.com/color-sensor/

Saving the Configuration File

Hit Done twice until you reach the USB Devices in
configuration page. On the USB Devices in
configuration page hit Save.

Name the configuration helloRobotTest and then
select Ok.

Note: The FTC SDK does not force you to abide by
a naming convention for but it is common to name
configurations in lowerCamelCase.

| cive Configuration: _unsaved) <o Config sev |
= [o-]c1

—=== Contro Hub Portal
embecoed

Control Hub
12CBus 0

Save Configuration

Please enter a name for the robot
configuration.

. helloRobotTest

Active Configuration: helloRobotTest

New

Available configurations: o

helloRobotTest
Press back to activate the saved configuration. ' '
Your Robot Controller will restart once you activate

a new configuration.

Common Errors in Hardware Mapping

Within the programming and software world errors come in many different forms and types. When hardware
mapping there are two major errors that you may run into. Both errors fall into common categories of
software errors:

e Interface Errors - are errors between how an interface should work and how it actually behaves

e Runtime Errors - are errors that occur when a program is being executed

Interface Errors

Interface errors occur in the SDK when the parameters of the SDK interface are not met. In the hardware
mapping process the most common interface error occurs with the Blocks Programming Tool. As mentioned
in the Introduction to Programming section, Blocks hides complexities of the SDK library from the users. One
way it does this is by automatically creating references to the hardwareMap when code snippets for an
external hardware unit are used.

In order to automate the hardwareMap calls the Blocks interface reads the configuration file and creates
hardware variables based off of the information it finds. For this reason it is important to create a
configuration file before trying to code.

The image below shows two different interface versions of Blocks. In the version with no configuration file
there are no drop down menus to access code snippets specific to actuators or sensors. In the version of the

https://textexpander.com/blog/the-7-most-common-types-of-errors-in-programming-and-how-to-avoid-them/
https://textexpander.com/blog/the-7-most-common-types-of-errors-in-programming-and-how-to-avoid-them/

interface with a confiauration file the dron down menus are nresent and the motor-specific code snippets are

OnBotlava Manage No Configuration File 2 OnBotJava Manage With Configuration File

Op Mode Name: Testing JEIEe §4 GCroup: « Enabled Op Mode Name: Testing [JISEle]s] hd Group: « Enabled

— LinearOpMode
= Gamepad
¥ Actuators

b left - lcurrentPosnion D |

Sensors set

eft - M Direction - f&M Direction ~REVERSE

Other Devices Extended
» Android
P Sensors En
» Utilities Other Devices
Logic » Android
i » Utilities 24 left - M Mode - JG) RunMode RUN_WITHOUT ENCODER
Math Logic
Text
s cail {EEEDD - (D) v o fode
Variables Text
Functions (F= G left - B Power ~ RN 1
Miscellaneous Variables
Functions 24 left - W Power - RGN 0
Miscellaneous

Runtime Errors

Within the SDK runtime errors occur during initialization or run. One of the most common runtime errors
within the REV Control System is exhibited in the image below.

This error is indicative of an inconsistency between how a hardware device is called within the code and

how that compares against the name used in the configuration file. There are two different ways this error
can occur.

The first occurrence of this error is when there is no configuration file found. This can mean that a
configuration file has not been created, a file has been created but is not active, or the wrong file is being
used. When any of these instances happen, the code is requesting a device name and type that the

hardware map is unable to locate in the configuration file. The program stops on the first such device name
it's unable to locate.

An incorrect reference to the hardwareMap can also cause this error to occur. Unlike Blocks, OnBot Java
and Android Studio require that a programmer hard code the hardwareMap call. If the reference name in the
call does not correspond with the name of the device in the configuration file (it is case sensitive) the code
will build without failure but the runtime error will occur. Lets use the configuration file from the previous
section as an example; where there is a touch sensor named "test_touch" and a motor name
"test_motor"

@ The quotations marks indicate that "test_touch" and "test_motor" representa string

variable that corresponds with the names of the devices in the configuration.

public class HR_test extends LinearOpMode{
private DigitalChannel test_touch;
private DcMotor test_motor;

@Override

public void runOpMode(){
//get the touch sensor and motor from hardwareMap
test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");
test_motor = hardwareMap.get(DcMotor.class, "test_moto");

Notice in the example lines of code that the hardwareMap.get () fortest motoris written as "test_moto"
rather than "test_motor." When the code is building, there is no immediate check that the name requested is
in the hardwareMap. This check is done when code is run on the robot. When the communication to the
hardwareMap is initiated it looks for "test_moto"” and when it can not find it, it creates the runtime error
referenced above.

Hello Robot - Test Bed

One of the most important steps in the engineering design process and the software development lifecycle is
testing. When working with code, ensuring that it works without errors and works to the standard decided
upon in the planning stage of the process is crucial. In order to ensure that the code is working as intended
testing needs to be performed.

Before delving into the introduction to programming sections, Test Bed - Blocks or Test Bed - OnBot Java; its
important to understand testing, the benefits of creating a test bed, the components needed for the next
sections, and how to use gamepads. Follow through the rest of this section to learn more about testing!

Section Goals of Section

Learn why is one of the most important aspects of
Testing Basics Software Development and how it differs from
troubleshooting.

Why creating a test bed of actuators and sensors
can help with programming. This test bed, or
something equivalent, will be used in following
sections.

Test Bed

Understanding the naming conventions for

Using Gamepads)
programming a gamepad.

@ Keep in mind that this is the introduction to the basic programming guide. Test Best - Blocks and
Test Bed - OnBot Java will walk you through the basics of programming with the REV Control
System.

Testing Basics

The purpose of testing is to identify, isolate, and correct potential issues in a design before the design is put
into use. Testing takes on different forms or provides different metrics for various intents in design. A
mechanism, like a shooter for instance, might be tested to confirm that it is running reliably. During the
planning phase of the design process you should create various performance, quality, and reliability metrics.
When the design is built, or the program is written, these metrics will help you identify whether the
mechanism meets the standards you expect it to. If the standards of operation are not met then the problem
needs to be isolated.

In order to fix a problem in the design process, you must isolate the source of the issue. To understand how
this works consider the following example:

@ A team has recently purchased a Control Hub and a Core Hex Motor. They plug the Core Hex
Motor into the Control Hub using the correct wiring, but when they go to run their code the motor
doesn't move. What is the most likely reason for this failure:

1. The program is the issue
2. The motor is the issue
3. The wire connecting the motor to the Hub is the issue

4. The Hub is the issue.

Without more information there is not a good way to discover why the motor is not running. In order to narrow
things down the different components have to be tested until the root of the issue is found. Common practice
is to start with a code that is known to work, such as one of the sample codes in the SDK. If the motor still
doesn't run the next thing the team should check is whether or not the wires are working as intended. One by
one the team should go through and test, or troubleshoot, the different potential origins of the problem to see
what is working and what isn't.

Once the source of an issue has been isolated, the issue needs to be corrected. The duration of the fix
depends on the sources of the problem and how deep it runs. For instance, if an op mode doesn't work as
intended the fix may be a simple change, like to the configuration file or the hardwareMap. A largerissue
that requires a redesign, like a mechanism not meeting performance metrics, triggers a restart of the
engineering design process.

Testing vs. Troubleshooting

Previously, testing was defined as the process of identifying, isolating, and correcting potential issues during

the design process. This differs from troubleshooting which is the process of identifying, isolating, and

~rnrrartinn icciiac nf a marhaniem thatwant thraininh tha tactina nrarace and winrlzad ac intandad

In the troubleshooting section the examples of a cars check engine light was used. In this example, the
known indicator of a failure was the cars engine light. The check engine light informs the driver that
something is wrong with the car but in order to find the cause of the issue troubleshooting and diagnostic
steps must be performed. To maintain that comparison, testing is what the engineers of the car use to
establish the metrics of expected engine performance. If those standards are not met then the check engine
light turns on to warn the driver of the issue.

Test Bed

One of the fallbacks to testing code in a system of components, like the REV Control System, is that there is
not a guarantee that all components are functioning as they should be. For instance, if a motor on the robot
isn't working there are several potentials reasons for the failure. The motor, the motor port on the Control
Hub, the wire connecting the motor to the port, and the code are all potential causes of motor failure.

If a failure occurs after the Robot is assembled it can be hard to go back and make changes, or
troubleshoot without having to disassemble the robot. One of the ways to plan ahead for this circumstance
is to create a test bed prior to creating a robot.

(1) When testing code do not assume that a failure is due to the mechanism rather than the code.
Testing and troubleshooting, while being similar concepts, are fundamentally different. Checking
the code or using a known code that works should always occur before troubleshooting
components like actuators and sensors.

A test bed is a testing environment for hardware and software components, commonly used in the
engineering world. Test bed applications includes a broad range of different equipment and measurement
testing. In some cases a test bed is a piece of equipment for testing a specific product, in other cases itis a
system of components that create a testing environment. Regardless, the end goal of a test bed is to ensure
a component is working before itis used for its intended purpose.

Creating a test bed eases the process of troubleshooting if there is a failure during code testing. The
purpose of this section is to create a test bed to test basic code in the Test Bed - Blocks and Test Bed -
OnBot Java sections.

Creating a Test Bed

The design of a test bed depends on the use case and available resources. For instance, one of the design
requirements for the test bed featured below was accessibility. Notice that the placement of the hardware
components on the Extrusion allows for the actuators, sensors, and Control Hub to be removed or swapped

out with ease.
(‘vl».‘ / ———

02
aAh
able

REV
DC 12
Ni-MH

@
[=}
0~
=
P
«

ISUHG]

40 HUHOSAS AOYS

s VY

2o i RN OB

e @ @

ANALOG e

Another major design consideration for this test bed was that it include the common components necessary
to teach users the basics of programming with the REV Control System. In this case components were
chosen from the REV FTC Starter Kit.

1. Control Hub

REV Core Hex Motor
Smart Robot Servo
Touch Sensor

Color Sensor V3

o g A~ Wb

Battery

@ Any one of these test beds components can be swapped out for an equivalent component. For
instance, if you have an Expansion Hub rather than a Control Hub. However, with an Expansion
Hub you may need to consider placement for the Robot Controller Phone.

There are other minor, but important, design considerations to make for a test bed. For example, when
adding an actuator to a test bed consider the following questions:

e What level of constraint does the actuator need? One of the benefits of creating a test bed for motors,
or other actuators, is that the motors can be properly constrained during the testing process. In this case
providing basic motion support and constraint is valuable.

e How will you be able to tell the behavior of the actuator? The example test bed uses a wheel with a
zZip tie to help users visualize the behavior of the motor. Tape or other markers can be used, as well.

For the purpose of this guide a test bed similar to the example one can be built.

Using Gamepads

The Test Bed sections highlights the necessary robot components needed to learn the basic programming
concepts used in the Test Bed - Blocks and Test Bed - OnBot Java sections. However, there are two more
components needed to succeed in testing your code: A Driver Hub (or equivalent Driver Station Android
Device) and a gamepad.

@ For information on setting up a Driver Hub and gamepad please visits the Getting Start with
Driver Hub guide.

All buttons on a gamepad can be programmed to a specific task or behavior. Throughout the Hello Robot
Guide you will encounter several different places where the gamepad is utilized. Knowing the general
naming convention for the gamepads will help you program them correctly. The guide assumes you are
using either a Logitech gamepad or a PS4 gamepad, like Etpark Wired Controller for PS4 (REV-39-1865).
To understand how to program a gamepad, especially with difference in the way certain buttons are named,
please see the following graphic and table, showcasing what the code lines correspond with which button.

Share Options ,
Left Bumper Right Bumper

Dpad

https://www.revrobotics.com/rev-39-1865/

PS

Left Stick Right Stick

Default (Logitech
Gamepad)

PS4 Controllers Blocks Java Data Type

Cross a qgamepad1 v IA '_l gamepadl.a Boolean

Circle b ﬂgamepam v I B 'J gamepadl.b Boolean

Triangle y qgamepad1 v IY J gamepadl.y Boolean

Square X qgamepam v IX v_l gamepadl.x Boolean

Dpad Up Dpad Up ¥ gamepadi - I Dpadugpainerpadl -dpa Boolean
d_up

gamepadl.dpa
Dpad Down Dpad Down amepad1 + DpadL)owndvd- Boolean
— _down

amepadl.dpa
Dpad Left Dpad Left q gamepad1 - I DpadL%n ::IPI — P Boolean
— _le

amepadl.dpa
Dpad Right Dpad Right ¥ gamepad1 - !Dpadkglgn(rj vp-_ s . Boolean
—d_rig

gamepadl. lef
Left Bumper Left Bumper amepadi1 v | LeftBumper v = Boolean
===t _bumper

)) wwem camepadl.rig
Right Bumper Right Bumper q gamepad1 - I Rightstmper - g Boolean

Left Trigger

Right Trigger

PS

Options

Share

Left Stick Button

Left Stick X Axis

Left Stick Y Axis

Right Stick
Button

Right Stick X
Axis

Right Stick Y
Axis

Data Types

Boolean

Left Trigger

Right Trigger

n/a

Start

Back

Left Stick Button

Left Stick X Axis

Left Stick Y Axis

Right Stick
Button

Right Stick X
Axis

Right Stick Y
Axis

ht_bumper

m= gamepadl. lef
gamepadi - | LeftTngper - =

t_trigger

== oamepadl.ri
“gamepad? - || Rightifianer > '8

==ht_trigger

(gamepadi - JPS_] gamepad.ps

m=s gamepadl.st
_gamepad1 - | Start -3

art

an |epad1 BaCk I)
=
@ k

gamepadl. lef

q gamepad1 I LeftStt _stick_butt

on

m= camepadl. lef
_gamepad1 - [LeftStickx + =

m=t_stick_x

== gamepadl.lef
_gamepad! - [LeftStiGky s
m==t_stick_y

gamepadl.rig

q gameead1 v I Riqhtfht_st-i ck_but
ton

m= gamepadl.rig

_gamepad1 - 1 Rightorickx = =
ht_stick_x

.—gamepadl. rig
gamepad1 ~ | RIQ&H‘.KY vom .
t_stick_y

Float

Float

Boolean

Boolean

Boolean

Boolean

Float

Float

Boolean

Float

Float

Boolean data has two possible values: True and False. These two values can also be represented by On
and Off or 1 and 0. Buttons, bumpers, and triggers on the gamepad provide boolean data to your robot. For
example, a button that is not pressed will return a value of False and a button that is pressed will return the
value True.

Float

Float data is a number that can include decimal places and positive or negative values. On the gamepad,
the float data returned will be between 1 and -1 for the joystick's position on each axis. Some examples of
possible values are 0.44, 0, -0.29, or -1.

Test Bed - Blocks

The Blocks Programming Tool is a visual, programming tool that lets programmers use a web browser to
create, edit and save their op modes. Blocks, like other scratch based programming tools, is a collection of
preset code snippets that users can drag-and-drop into the appropriate code line. In this section users can
learn how to create an op mode, as wells as the basics of programming the actuators and sensors featured
on the test bed.

Follow the guide in order to get an in depth understanding of working with Blocks or navigate to the section
that fits your needs:

Section Goals of Section

Focuses on how to navigate the Blocks interface

Creating an Op Mode
and create an op mode.

Breaks down the structure and key elelments
needed for an op mode, as well as some of the
essential components of Blocks and programming
logic.

Programming Essentials

How to code servos and motors. This section wall
through the basic logic of coding actuators,
controlling actuators with a gamepad, and using
telemetry.

Programming Actuators

How to code a digital device. The section focuses
Programming Sensors on the basic logic of coding a digital device, like a
REV Touch Sensor.

Creating an Op Mode

Before diving in and creating your first op mode, you should consider the concept of naming conventions.

https://en.wikipedia.org/wiki/Naming_convention_(programming)

When writing code the goal is to be as clear as possible about what is happening within the code. This is
where the concept of naming conventions comes into play. Common naming conventions have been
established by the programming world to denote variables, classes, functions, etc. Op modes share some
similarities to classes. Thus the naming convention for op modes tends to follow the naming convention for
classes; where the first letter of every word is capitalized.

@ This section assumes that you have already accessed the Blocks platform during the Hello Robot
- Introduction to Programming. If you are unsure how to access blocks please revisit this section
before proceeding.

To start, access the Robot Controller Console and go to the Blocks page. In the upper right-hand corner of
there is a Create New Op Mode button, click it.

OnBotJava Manage

Create New Op Mode || Upload Op Mode J Download Offline Blocks Editor

My Op Modes
] Op Mode Name Date Modified ¥

Clicking the Create New Op Mode button will open up the Create New Op Mode window. This window
allows users to name their op modes and select a sample code to build off of. For this guide use the default
BasicOpMode sample and name the op mod HelloRobot_TeleOp as shown in the image below.

Create New Op Mode | Upload Op Mode | Download Offline Blocks Exitor

Sounds
My Op Modes.

=] Op Mode Name Date Modiied V. Enabled

Create New Op Mode

Create New Op Mode

Op Mode Name: [

Op Mode Name: |HelloRobot _TeleOp

Sample: [BasicOpModk v -\
Sample: | BasicOpMode v |

Once the op mode has been named click 'OK' to proceed forward. Creating an op mode will open up the
main Blocks programming page. Before moving on to programming, take some time to learn and understand
the following key components of Blocks featured in the image below.

OnBotJava Manage

I Save Op Mode I Export to Java | Download Op Mode | Download Image of Blocks
7\

https://en.wikipedia.org/wiki/Class_(computer_programming)

u_) Op Mode Name: HelloRobot_TeleOp Group: ¥ Enabled
~ LinearOpMode [This function is executed when this Op Mode is selected from the Driver Station_]
(=1 Gamepad
P Actuators oz i'om
@ P Sensors
» Other Devices cal .
» Android (@) i | cal .
P Utilities do
@ Logic ' repeat =TT HelioRobot TeleOp I
Loops do
Math |
Text
@ Lists
Variables
Functions

Miscellaneous

1. Save Op Mode - Click this button to save an op mode to the robot. It is important to save the op mode
any time you stop working on a code, so that progress is not lost.

2. TeleOp/Autonomous - This section of blocks allows users to change between the two types of op
modes: teleop and autonomous.

3. Categorized Blocks - This section of the screen is where the programming blocks are categorized and
accessible. For instance, clicking Logic will open access to programming blocks like if/else statements.

4. Programming Space - This space is where blocks are added to build programs.

/\ Ifaconfiguration has been made then the Actuators, Sensors, and Other Devices in the
Categorized Blocks section should appear as drop down menus, where blocks that are unique to
specific hardware can be accessed. If this is not the case a configuration file has not been made.
For more information visit the Configuration page, before moving forward with programming.

Programming Essentials

During the process of creating an op mode the Blocks tool prompted the selection of a sample code. In
Blocks these samples act as templates; providing the blocks and logical structure for different robotics use
cases. In the previous section the sample code BasicOpMode was selected. This sample code, seen in the
image below, is the structural shell needed in order to have a working op mode.

ENON™ runOpMode
[l HelloRobot_TeleOp || waitForStart
'@ | || - HelloRobot_TeleOp | opModelsActive

Fut run DIOCKS nere.

repeat‘_., +-||l HelloRobot TeleOp | opModelsActive
<ol Put loop blocks here.
LcaII Telemetry | update

An op mode can often be considered a set of instructions for a robot to follow in order to understand the
world around it. The BasicOpMode provides the initial set of instructions that are needed in order for an op
mode to properly function.

Though this sample is given to users to reduce some of complexities of programming as they learn; it
introduces some of the most important code blocks. Itis also important to understand what is happening in
the structure of the BasicOpMode, so that code blocks are putin the correct area.

Key Op Mode Blocks

Enter your comment here!

e n .
_ [Putioop blocks here. |-
-2

-~

Comments are blocks of code that benefit the human user. They are used by programmers to explain the
function of a section of code. This is especially helpful in collaborative programming environments. If code is
handed from one programmer to another, comments communicate the intent of the code to the other
programmer. Blocks like @ initialization blocks here-l are comments written by the FIRST Tech Team to inform

the user what will happen when blocks are added directly beneath the comment.

Put initialization blocks here.

For instance, any programming blocks that are placed after the @ initialization blocks here-]comment (and

before the @HelloWorldiﬁapsedTime IwaitForStarthIock) will be executed when the op mode is first selected

by a user at the Driver Station. Typically, blocks putin this section are meant to create and define variables
between the initialization and start phases of the op mode.

(1) A variable is a storage location with an associated symbolic name, which contains some known
or unknown quantity of information referred to as a value. Variables can be numbers, characters,
or even motors and servos.

-\l HelloRobot TeleOp | waitForStart

When the Robot Controller reaches the block @HelloWorldiEIapsedW it will stop and wait
until it receives a Start command from the Driver Station. A Start command will not be sent until the user
pushes the Start button on the Driver Station. Any code after the @He"oWOFIdjapsedW
block will get executed after the Start button has been pressed.

After the mHelloWorIdiEIapsedTime I waitForStart | there is a conditional if block

(&) if [call HeIIoWorId_EapsedTime I opModelsActive |
do that only gets executed if the op mode is still active (i.e., a stop

command hasn't been received).

@ T HelloRobot_TeleOp M opModelsActive
do
|0 while - | T HelloRobot_TeleOp M opModelsActive
do

L(iall Telemetry || update

@ If-then (if-else) statements are similar to the concept of cause and effect. If cause (or condition)
happens, then perform effect.

Any blocks that are placed after the {Putrun blocks here. § comment and before the
repeat N HeIIoWorId_EIapsedTime I opModelsActive l

do will be executed sequentially by the Robot Controller after the

Start button has been pressed.

repeat Rl caII HelloWorld_ElapsedTime [opModelsActive |) R .)
The B I is an iterative or looping control structure.

repeat." +-ll HelloRobot_TeleOp | opModelsActive

https://en.wikipedia.org/wiki/Variable_(computer_science)

Put loop blocks here.

:éll Telemetry | update

This control will perform the steps listed under the “do” portion of the block as long as the condition
mHeuoWOrld_ﬁapsedTime I opModelsActive l is true. What this means is that the statements included in the
“do” portion of the block will repeatedly be executed as long as the op mode HelloRobot _TeleOp is running.

Once the user presses the Stop button, the Wf[HelloWorid_ElapsedTime Jij opModelsActive]| Clause is no longer

repeat KWl HelloWorld_ElapsedTime I opModelsActive l

true and the B loop will stop repeating itself.

Functions and Methods

The previous section did not go into a detailed discussion of the purple function (or method) blocks.
Functions and methods are similar procedures in programming that are more advance than what will be
covered in this guide.

For now the most important thing to know is that occasionally methods within the SDK libraries will need to
be called in order to perform a certain task. For instance, the mHeIIoWorldiElapsedTimelopModeIsActiveI line
calls the method opModelsActive, which is the procedure in the SDK that is able to tell when the robot was
been started or stopped.

2 @ = runOpMode
' -'- jjm
|1 HelloRobot TeleOp |+ waitForStart
f |1 HelloRobot TeleOp || opModelsActive
_Put run blocks here
~ whwe =l HelloRobot_TeleOp | opModelsActive

do

' call Telemetry | update |
-

When your programming skills have advanced take sometime to visit the concepts of functions and methods
and explore how they can help you enhance your code.

Programming Actuators

Servo Basics

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Method_(computer_programming)

The goal of this section is to cover some of the basics of programming a servo within Blocks. By the end of
this section users should be able to control a servo with a gamepad, as well as understand some of the key
programming needs of the servo.

@ This section is considering the Smart Robot Servo in its default mode. If your servo has been
changed to function in continuous mode or with angular limits it will not behave the same using
the code examples below. You can learn more about the Smart Robot Servo or changing the
Servo's mode via the SRS Programmer by clicking the hyperlinks.

With a typical servo, you can specify a target position for the servo. The servo will turn its motor shaft to
move to the target position, and then maintain that position, even if moderate forces are applied to try and
disturb its position.

1500ps

-135° +135°
500ps 2500yps

For both Blocks and OnBot Java, you can specify a target position that ranges from 0 to 1 for a servo. For a
servo with a 270° range, if the input range was from 0 to 1 then a signal input of 0 would cause the servo to
turn to point -135°. For a signal input of 1, the servo would turn to +135°. Inputs between the minimum and
maximum have corresponding angles evenly distributed between the minimum and maximum servo angle.
This is important to keep in mind as you learn how to code servos.

Since this section will focus on servos itis important to understand how to access servos within Blocks. At
the top of the Categorize Blocks section there is a drop down menu for Actuators. When the menu is
selected it will drop down two choices: DcMotor or Servo. Selecting Servo will open a side window filled
with various servo related blocks.

= LinearOpMode
— LinearOpMode (= Gamepad

* Gamepad

[» Actuators | 1 — » DcMotor

> Sensors [Esewo] | (& | o WY

b Other Devices » Sensors

[T 5

https://docs.revrobotics.com/duo-build/actuators/servos/smart-robot-servo
https://docs.revrobotics.com/duo-build/actuators/servos/srs-programmer

P Android P UINEer Uevices
» Utilities » Android
» Utilities

Programming a Servo

From the Servo menu select the block test_servo - Fesition . n 0

@ The block above will change names depending on the name of the servo in a configuration file. If
there are multiple motors in a configuration file the arrow next to test_servo will drop down a
menu of all the servos in a configuration.

repeat Kl ||l HelloWorld_ElI dTil I ModelsActi I .
Add this block to the op mode code within the d: sie W Felobrd BpseiTime M cpbedeiholve . Click on the

number block to change from El test servo - !I-Dosition v m 0 to El test_servo - !I-Dosition v m 1

Put ntiahzaton biocks here

_J MeloRobot TeleOp B watF orStart
' _] HelloRobot_TeleOp M opModeisActive
Pyt run blocks here
2] whie - BIESE T HelloRobot_TeleOp il opModelsActive
I Put loop blocks here
- test_servo - | Position - |

Select Save Op Mode in the upper right corner in the Robot Controller Console.

@ Try running this op mode on the test bed two times and consider the following questions:
e Did the servo move during the first run?
e Did the servo move during the second run?
If the servo did not move switch from Mservo . Fosition . m 17 backto

ﬁl test servo !I-Dosition v m 0 and try again.

The intent of the Mservo . !l-%sition . m 1 is to set the position of the servo. If the servo is already
in the set position when a code is run, it will not change positions. Lets try adding another

@test_servo W Position - JHI 0 block and see what changes.

Drag an additional Mservo . Fosition . n 0 block into the op mode code under the

' Put initialization blocks here.l comment.

Put ntiakzation blocks here
set : to

_] HelloRobot _TeleOp B watforStart
‘ _] HelloRobot_TeleOp B opModeisActive
Put run blocks here
epeat L9 _] HelloRobot _TeleOp Bl opModeisActive
_Jll Put loop blocks here

@ Try running this op mode on the test bed and consider the following question:

e Whatis different from the previous run?

The Mservo . !l-'*‘osition . m 0 thatwas added in the step above changes the servo position to 0
during the initialization phase, so when the op mode is run the servo will always move to position 1. For
some applications starting the servo in a known state, like at position zero, is beneficial to the operation of a
mechanism. Setting the servo to the known state in the initialization ensures it is in the correct position when
the op mode runs.

Programming a Servo with a Gamepad

The focus of this example is to assign certain servo positions to buttons on the gamepad. For this example
the known state will stay at position 0, so that after initialization the servo will be a the -135 degree position
of the servo range. The following list shows what buttons correspond with which servo position.

@ If you are using a PS4 Controller, like the Etpark Wired Controller for PS4 (REV-39-1865), see the
Using Gamepads section to determine how the gamepad code used in this section translates to
the PS4 Gamepad.

Button Degree Position Code Position

Y -135 0

https://www.revrobotics.com/rev-39-1865/

A 135 1

The best way to switch the servo position will be to use a conditional if/ else 1if statement. An if
statement considers whether a conditional statement is true or false. If the conditional statement is true a
defined action (like the servo moving) is performed. If the conditional statement is false the action is not
performed.

An if/ else 1if statementtakes in multiple different conditional statements. If the first conditional
statement is found to be false then the second conditional state is analyzed. Each statementinthe if/
else 1if will be analyzed one by one until a statement is found true or all statements are found false. For
this example, there will be three conditions that will need to be checked.

(3]
From the Logic Menu in Blocks select the m block and drag in into the op mode's while loop.

Logic
Loops

Math T @

Text

Lists do

ariables

Functions
Miscellaneous

(&) if
Click on the blue and white Settings icon for the block. This will display a pop-up menu that lets you

_ (@]
modify the block.

Drag an w block from the left side of the pop-up menu and snap it into place under the ﬂ block.
Drag a second @ block from the left side and snap it into place on the right side under the first @
block.

else if
else if else if

else if

There are three different paths inthis if/else if block. Each one corresponds with one of the three
chosen servo positions 0, 0.5, and 1. However, there are four different buttons that will be used for this
example. Both button B and button X should be able to move the servo to position 0.5. In order to do this the
logical operator or needs to be used.

@ The logical operator or considers two operands if either (or both) are true the or statement is true.
If both operands are false the or statement is false.

From the Logic Menu in Blocks select the block.

Logic
Loops
Math
Text
Lists
Variables

Functions

. Miscellaneous |

Add this blockto the If/else if block, as shown in the image below. Use the drop down menu on the

block to change it from an block to an block.

All gamepad related blocks are in the Gamepad Menu.

= LinearOpMuode
(=) Gamepad
» Actuators
» Sensors T~ gamepad1 v
» Other Devices
» Android

P Utilities

Add each button to the if/else if block as seen inthe image below.

. gamepadl * | Y

elseif | gamepad? - _' gamepadi - Eﬂ

SNt gamepadl v | A v

~

Add @ fest_servo - J Position - JllL 1 | blocks to each section of the Iffelse if block. Set the servo position to

correspond with the assigned gamepad button.

6 i | gamepadl v | Y

SN test_servo -+ [l Position - R
BB gamepadt - |- X - Mor - [gamepad1 + |4 B - |
S| test servo [Position - REl 0.5

SN gamepadl v L A v
SCH | test servo - [Position - 1

There are three different paths inthis i f/else if statement. If the first conditional statement is true (the
Y button is pressed) the servo moves to code position 0 and the other conditional statements are ignored. If
the first condition is false (the Y button is not pressed) the second condition is analyzed. Recall that this
behavior repeats until a condition is met or all conditions have been tested and found false.

N b hy e
~ - test_servo - | Position - [

i

-!-.(

I : ‘ *
@ gamepadt - 1Y - |
CONE] test_servo - [Position - J&
LB gamepad1 - | X - Jlor - [gamepad1 * || B - |
LN test_servo - | Position - [

CE LR gamepadt © B A -
SLH - test servo - [Position - TN 1

Servos and Telemetry

Telemetry is the process of collecting and transmitting data. In Robotics telemetry is used to output internal

data from actuators and sensors to the Driver Station. This data can then be analyzed by users to make

AAaricinne that ~an imnravna ~AadaA

The most useful telemetry from the servo is the the position of the servo along its 270 degree range. In order
to get that information the following line needs to be used.

In order to access the telemetry blocks select the Utilities drop down. The utilities drop down is in

alphabetical order, so telemetry is towards the bottom of the drop down options. Select the
call -

number

123

— LinearOpMode
< Gamepad

P Actuators

P Sensors

P Other Devices

» Android
p Utilities

Acceleration
AngleUnit
AngularVelocity
AXIS
&b Color
Dbglog
MagneticFlux
Matrix
Orientation
PIDFCoefficients
Position
Quaternion
Range
Telemetry

||l Telemetry | addData

Drag the

key key
number 123

key block from the telemetry menu.

call | addData

key key

number 123

block and place it beneath the i f/else if block set.

l.

' call " addData

key

number

From the Servo menu pullout the block Drag the Block and attach it to the

number parameter on the telemetry blocks.

test servo * | Position

Change the key parameter to "Servo Position"

||l Telemetry | addData

G Servo Position

ilelsie - test servo + . Position -

When the op mode is run the telemetry block will display the current position information will be displayed
with the Servo Position Key. The number that corresponds with the current position will change as the servo
shaft position changes.

Motor Basics

@ Modify your op mode to add the motor related code. This can be done by clearing out your current
code modifications or adding the motor related code to your current op mode.

The goal of this section is to cover some of the basics of programming a motor within Blocks. By the end of
this section users should be able to control a motor using a gamepad, as well as understand some of the
basics of working with motor encoders.

Since this section will focus on motors it is important to understand how to access motors within Blocks. At
the top of the Categorize Blocks section there is a drop down menu for Actuators. When the menu is
selected it will drop down two choices: DcMotor or Servo. Selecting DC Motor will open a side window
filled with various motor related blocks.

= LinearOpMode

= LinearOpMode (= Gamepad
) Gamepad
| Actuators | |——
P Sensors i Servo set - to Bl

p Other Devices » Sensors

» Android » Other Devices
- Utilities » Android
» Utilities

Driving Motors

From the Dc Motor menu in Blocks select the block @ﬂmowr . IPower . m 1

@ The block above will change names depending on the name of the motor in a configuration file. If
there are multiple motors in a configuration file the arrow next to test_motor will drop down a
menu of all the motors in a configuration.

Add this block to the op mode code within the while loop.

] runOpMode

' v— — —‘n—

=T HelloRobot_TeleOp I wartf orStar
T HelloRobot_TeieOp N opModeisActive
“Put run blocks here.
ST whie - IR HeloRobot TeieOp I op!
3 Put loop blocks here.

-1 test_motor - | Power - i

b o e

R N TN

Select Save Op Mode in the upper right corner in the Robot Controller Console.

@ Try running this op mode on the test bed and consider the following questions:
e How fastis the motor running?
e What happens if you change the power from 1 to 0.3?

e What happens if you change the power to -17?

The level of power sent to the motor is dependent on the numerical number assigned to the motor. The
change from 1 to 0.3 decreased the motors speed from 100% of duty cycle to 30% of duty cycle. Meanwhile,
the change to -1 allowed the motor to rotate at 100% duty cycle in the opposite direction. So, power can be
fluctuated to drive a motor forward or backwards.

However, the Mmotor . Fower . m 1 block will run the motor in the assigned direction until
something in the code stops the motor or causes a change in direction.

@ To better understand motors and the concept of duty cycle check out the our Motors and
Choosing an Actuator documentation.

https://docs.revrobotics.com/15mm/actuators/motors
https://docs.revrobotics.com/15mm/actuators/choosing-an-actuator

Driving Motors with the Gamepad

In the previous section you learned how to set the motor to run at a specific power level in a specific
direction. However, in some applications, it may be necessary to control the motor with a gamepad, to easily
change the direction or power level of a mechanism.

From the Gamepad Menu in Blocks select the * gamepad1 - I LeftStickY ~ I Block.

= LinearOpMode
(=) Gamepad
» Actuators
P Sensors - LeftStickY -
» Other Devices
» Android

- Utilities

Drag the d gamepad1 - I LeftStickY - I block so it snaps in place onto the right side of the

Mmotor . lPower . n 1 block. This set of blocks will continually loop and read the value of
gamepad #1's left joystick (the y position) and set the motor power to the Y value of the left joystick.

"™ runOpMode |

call "".' —-‘.:.:lﬂ‘) C' ‘ ""
i T HelloRobot TeleOp I opModelsActive
0 while - BEES] HelloRobot TeleOp I opModelsActive |
| test_motor - || Power - | {1 gamepad1 - | LeftStickY -
] Telemetry J update.

Note that for the Logitech F310 gamepads, the Y value of a joystick ranges from -1, when a joystick is in its
topmost position, to +1, when a joystick is in its bottommost position. If the motor is not running in the
intended direction adding a negative symbol, or negation operator, to the line of code will change the
direction of the motor in relation to the gamepad.

From the Math Menu in Blocks select the m 9 block in the image below.

! Logic |

Loops
Text
Lists
Vanables
Functions

Miscellaneous

Drag the negative symbol block so it snaps in place between the %motor . IPower . m 1. and

d gamepad1 - I LeftStickY - I blocks.

set . o -+ N gamepad1 - | LeftStickY -

Motors and Telemetry

Recall that telemetry is the process of collecting and transmitting data. In Robotics telemetry is used to
output internal data from actuators and sensors to the Driver Station. This data can then be analyzed by
users to make decisions that can improve code.

In order to gain telemetry data from the motor, motor encoders need to be used. REV DC Motors, like the
Core Hex Motor, are equipped with internal encoders that relay information in the form of counts.

In order to access the telemetry blocks select the Utilities drop down. The utilities drop down isin
alphabetical order, so telemetry is towards the bottom of the drop down options. Select the
call -

key key block from the telemetry menu.
number 123

Acceleration
AngleUnit

— LinearOpMode AngularVelocity

I Gamepad L v:| |l Telemetry | addData
olor :

P Actuators

Dbglog

P> Sensors / MagneticFlux key key

P Other Devices Matrix

" Qrientation
> Ar!(?lr_c:ld PIDF Coefficients number 123
» Utilities B

Quaternion
Range
Telemetry

||l Telemetry | addData

Drag the key key block and place it beneath the
number 123

€T HFower T Missnepar e] block set

Put rvtiahzation blocks here
_J HetoRobot _TeleOp B watf orStart.

_J HetoRobot TeleOp B opModeisActve
Pt run blocks here
L] whie B _J HelloRobot _TeleOp B cpModeisActive
Ll P\t loop blocks here
Ll tost_motor - B Power - LSRN - © B gamepad!
o1l Telemetry | addData
key key

(" A

number 123

From the DC Motor menu pullout the block q test_motor ~ I CurrentPosition vl . Drag the Block and attach it
to the number parameter on the telemetry blocks.

‘test_motor * | CurrentPosition ~

Change the key parameter to "Counts Per Revolution: "

||l Telemetry || addData

key Counts Per Revolution:

Wllglel= - test_motor * | CurrentPosition ~

When the op mode is run the telemetry block will display the current position information will be displayed
with the Counts Per Revolution Key. The number that corresponds with the current position will change as
the motor shaft position is changed.

@ For more information on programming encoders check out the Using Encoders page. For more
information the counts per revolution metric and how to use it check out the Encoders page.

Programming Sensors

Touch Sensor Basics

@ Modify your op mode to add the digital device related code. This can be done by clearing out your
current code modifications or adding the digital device code to your op mode.

The goal of this section is to cover some of the basics of programming a digital device, or Touch Sensor,
within Blocks.

Since this section will focus on digital devices itis important to understand how to access digital device
specific blocks. At the top of the Categorize Blocks section there is a drop down menu for Other Devices.
When the menu is selected it will drop down an option for Digital Devices. Selecting Digital Devices will
open a side window filled with various digital device related blocks. The one that will most commonly be

used is | test touch - [State - || .

= LinearOpMode — LinearOpMode

() Gamepad () Gamepad

> Actuators : g:::;?f

e 4/ ¥ Other Devices teSt to U Ch v - State v
[» Other Devices| —

P Android » Android

P Utilities b Utilities

@ Before programming with a Touch Sensor or other digital device itis important to understand what

a digital device is and what the common applications for digital devices are. Visit the Digital
Sensors page for more info.

Programming a Digital Device

The information from digital devices comes in two states, also known as binary states. The most common
way to utilize this information is to use a conditional statement like an if/else statement.

() if
From the Logic Menu in Blocks select the block.
else

Logic
Loops
Math
Text
Lists
Variables

Functions
Miscellaneous

) if
Drag the block and place it beneath the [Put run blocks here.l comment.
else

Selecta : block from the Digital Devices menu and add it to the if/do/else block as

shown in the image below.

€5 i | test touch v | State +
do

The @ test touch ~ ¥ State ~ J| block stores the binary FALSE/TRUE information from the touch sensor and

@) if

acts as the condition for the statement. If : is true, any code placed in the do
else

portion of the block will be activated. If is false anything placed in the else portion

of the clock will be activated

The FALSE/TRUE state of a REV Touch Sensor corresponds with whether or not the button on the Touch
Sensor is pressed. When the button is not pressed the state of the Touch Sensor is True. When the button is
pressed the state of the Touch Sensor is False,

To help remember how the physical and digital states of the sensor correspond in the next few sections lets
use some comments.

Comment blocks can be found in the Miscellaneous menu.

Logic

Loops

Math

Text

Lists
Variables
Functions
Miscellaneous

Enter your comment here!

(©) if

Place one comment block in the do portion of the [

else

block and change the comment to say

|Touch is Not I'Dressed| Add another comment to the else portion of the block and change that comment to say
, as shown in the image below.

The next step in the process is to use telemetry to display the status of the Touch Sensor on the Driver
Station phone. To do this, lets create a string variable called touchStatus.

@ String refers to data that consists of a sequence of characters.

192.168.43.1:8080 says

https://en.wikipedia.org/wiki/String_(computer_science)#String_datatypes

\.!./ consola C
Save Op Mode Download Op Mode | Download Imag

tw:-u-:h.‘}'tatusl

Op Mode Name: Biank [JEEeS M croup:

— LinearOpMode)
: e Create variable...

P Actuators

P Sensors

P Other Devices
» Android

» Utilities

Logic

Loops
Math
Text
Lists

Variables
Functions
Miscellaneous

1. Click on the Variables menu. This will open a side window
2. Select the Create variable... block

3. A prompt from the FIRST Robot Controller will appear asking for a name for the variable. Name the
variable touchStatus . Click okay

This process created a variable named touchStatus . Currently touchStatus is undefined, in order to
define it the QEES 1N block needs to be used. This block can be found in the Variables menu

now that the variable has been created.

Logic
Loops
Math
e 2210 touchStatus ~ [l
Variables
Functions
Miscellaneous

Drag a & ™ block and place it beneath the (Touchis Not Pressed | comment block. Add

(@) if
another &3l touchStatus » ReM ' block to the block set under the { Touchis Pressed § comment.
else

(%) if _ test_touch - ~ State *
do Touch is Not Pressed

s\k‘et touchStatus + [
N

=1k(=0 1 Touch is Pressed

=1 touchStatus -~ L&
|

The && I block allows you to define the touchStatus variable. Depending on what the
status is of the touch sensoris, touchStatus will be setto a different string. For this select the string
n block from the Text menu, as seen in the image below.

Logic
Loops
Math
Text
Lists
Varniables
Functions
Miscellaneous

Attach a string block to both blocks. Fill the n blocks with a status message
that relates to the state of the Touch Sensor. For instance, plk Not Pressed k| and .

€ i | test touch - | State *
do Touch is Not Pressed

s-ét touchStatus * |
—
k=0 Touch is Pressed

dét touchStatus ~ & Pressed -

- Not Pressed |

To display this information on the Driver Station phone telemetry must be used. In order to access the
telemetry blocks select the Utilities drop down. The utilities drop down is in alphabetical order, so telemetry

call " addData

is towards the bottom of the drop down options. Select the key key block from the
text text

telemetry menu.

A mmmlaratian

AngleUnit
— LinearOpMode AngularVelocity
= Gamepad Axis
& Clor Telemeiry W addData’
b Actuators Soeton ||l Telemetry | addData
> Sensors MagneticFlux key
P Other Devices / Matrix text
» Android Orientation _
— PIDFCoefficients
» Utilities Position
Quaternion
Range
Telemetry
call . @) if
Drag the S key block and place it beneath the .y block set.
text text eise

Nt ke e
w32
R N2 ap Soaha e
@ test_touch - M State - |
do
- touchstatus ~ JEHII Not Pressed

=8 Touch is Pressed

_set touchStatus ~ fer | .

' call YV addData
LG

text

From the Variables menu select the @ touchStatus v J| block. Drag the Block and attach it to the text
parameter on the telemetry block.

touchStatus -

Change the key parameter to "Button Status: "

lelemetry addbata

Button Status:
=y ¢ | touchStatus -

When this program is run the touchStatus telemetry will appear on the Driver Station phone. The
touchStatus information will change based on the state of the Touch Sensor button.

Digital Devices as Limit Switches

One of the most common uses for a digital device like a touch sensor is to use it as a limit switch. The intent
of a limit switch is to stop a mechanism, like an arm or lift, before it exceeds its physical limitations. In this
application power needs to be cut from the motor when the limit is met.

The concept of a limit switch involves many of the same steps from the previous section on programming a
digital device. For that reason lets pick up from the following block set:

(%) test touch - | State -
do Touch is Not Pressed
Ny

<=0 1F Touch is Pressed
N

(z2) if
The block establishes a conditional environment for the limit switch. If the touch sensor is not
else

pressed the motor can run, however, if it is pressed the motor can not run. To add this to the code the

@test_motor “WFower - FIL 1 block needs to be used.

-1 test_motor - [Power - ReH{ - 1

‘ (L Forinformation on where to find motor specific blocks please revisit the motor section.

—
Add a Mmotor . lPower . m 1. block under the (Touch is Not Pressed § comment. Change the power to

0.3. Add another Mmotor . !l-Dower . m 1 block under the comment. Change the
power to O.

€ i | test touch - | State v
do Touch is Not Pressed

éét-to

== Touch is Pressed
éét - to

0.3

(&) if
This block introduces the basics of a limit switch. Like with most sensors, its good to have telemetry
else

that updates the Driver Station on the status of the sensor. Consider the code from the previous section, or
the following code as potential ideas for telemetry.

(2 @) &) runOpMode

| >-1ll HelloRobot_TeleOp | waitForstart
@) if | call .
do
| repeat_- +:1 [l HelloRobot TeleOp = opModelsActive
do
FEI [test_touch - W State - |
do

(S test_motor ~ Ji Power - RCHI, 0.3

=18 Touch is Pressed
-« test_motor - I Power -~ Rei(- 0
||| Telemetry I speak

text Limit has been met!

|

[Telemetry i update

Test Bed - OnBot Java

OnBot Java is a text-based programming tool that lets programmers use a web browser to create, edit and
save their Java op modes. In this section users can learn how to create an op mode, as wells as the basics
of programming the actuators and sensors featured on the test bed.

Follow the guide in order to get an in depth understanding of working with OnBot Java or navigate to the
section that fits your needs:

Section Goals of Section

Focuses on how to navigate the OnBot Java

Creating an Op Mode .
g P interface and create an op mode.

Breaks down the structure and key elelments
Programming Essentials needed for an op mode, as well as some of the
essential components of Java.

How to code servos and motors. This section wall
through the basic logic of coding actuators,
controlling actuators with a gamepad, and using
telemetry.

Programming Actuators

How to code a digital device. The section focuses
Programming Sensors on the basic logic of coding a digital device, like a
REV Touch Sensor.

Creating an Op Mode

Before diving in and creating your first op mode, you should consider the concept of naming conventions.
When writing code the goal is to be as clear as possible about what is happening within the code. This is
where the concept of naming conventions comes into play. Common naming conventions have been
established by the programming world to denote variables, classes, functions, etc. Op modes share some
similarities to classes. Thus the naming convention for op modes tends to follow that naming convention for
classes; where the first letter of every word is capitalized.

@ This section assumes that you have already accessed the OnBot Java platform during the Hello
Robot - Introduction to Programming. If you are unsure how to access OnBot Java please revisit
this section before proceeding.

To start, access the Robot Controller Console and go to the OnBot Java page. There are a few key things to
take note of on the main Onbot Java page.

FIRST: S Blocks Manage
console

O -!’ - B Welcome x

T ¥ Welcome Lo the UnBotJava code Editor =

Project Files 2
. . . o . . .
» W org firstinspires. fic teamcode 3 If you are just starting out, click the '+' (Add File) icon 1in the top left cor

4 Enter your new file name, and then choose one of the many samples.

https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://en.wikipedia.org/wiki/Class_(computer_programming)

If you just want to drive a basic robot, select the "BasicOpMode_Linear" sample
Select the "TeleOp" radio button, and then click "OK".

The sample you chose will be renamed to match the name you entered, and it
9 will appear on the "project files" list in the left pane.

11 To edit your code, just click on the desired file in the left hand pane,
12 and it will be loaded into this Code Editor window. Make any changes.

14 Once you are done, click the "Build Everything" dicon at the bottom of this pane
15 This will build your OpModes and report any errors.

16 If there are no errors, the OpModes will be stored on the Robot for immediate u
18 ## Samples

20 There are a range of different samples to choose from.

21 Sample names use a convention which helps to indicate their general, and

22

23 es: The name's nrefiv dearrihes the ceneral niirnnse whirh can he ane af

4

Build started at Fri Dec 04 2020 17:41:39 GMT-0680 (Central Standard Time)
Build SUCCESSFUL!

Build finished in 1.9 seconds

o o 0@ @ ©

Create New Op Mode - The plus sign button opens up a window to create a new op more.

Project Browser Pane - This pane shows all the java project files on the Robot Controller.

Source Code Editing Pane - This pane is the main code editing area.

A

Message Pane - This pane provides messages on the success or failure of code builds.

5. Build Everything - Builds all of the .java files on a Robot Controller.

@ When an op mode is created or edited the OnBot Java editor will auto-save the .java file to the file
of system of the Robot Controller. However, in order to execute the code on the Robot Controller
the .java text file needs to be converted to a binary that can be loaded dynamically onto the FTC
Robot Controller app. This conversion is done by building the op modes.

Select the Create New Op Mode button. This will open the New File window. This window allows users to
choose settings like: naming their op modes, selecting a sample code to build off of, or choosing op mode
type.

For this guide select the following sections:

New File

File Name

HelloWorld_TeleOp .| java

Location

New File

org/ffirstinspires/ficiieamcode

File Name

» B org firstinspires ftc teamcode

Location

orgfirstinspires/ficteamcode

» W org firstinspires fic teamcode:

sample

0 Autonomaus [e

‘ BlankLinearupvoae A

0 Disable Ophode

(0 Setup Code for Configured Hardware

© Autonomous @ TeleOp O Not an OpMode O Preserve Sample
[Disable OpMode

Setup Code for Configured Hardware

File Name: HelloRobot_TeleOp

Sample: BlankLinearOpMode

Op Mode Type: TeleOp

Setup for Configured Hardware: on

Once the proper settings have been choose, select "OK" to create the op mode. The new file will populate
the Project Browser Pane.

Programming Essentials

During the process of creating an op mode the Onbot Java tool had several options to choose from. Those
options define what information is already included in the op mode, which can simplify what a programmer
has to do on their end. For instance, an option was given to select a sample. In OnBot Java these samples
act as templates; providing statements, logical structure, and syntax for different robotics use cases.

In the previous section the following settings were selected: the Setup Code for Configured Hardware
option, the TeleOp option, and a sample code called BlankLinearOpMode. These options combined setup
the shell of code needed to have a functional op mode.

An op mode is considered a set of instructions for a robot to follow in order to understand the world around it.
Even though the SDK provides readily available op mode structures, understanding what concepts the
template is utilizing, and why, helps increase programming knowledge. Follow through this section to learn
more about the op mode template and the programming concepts that make up its structure.

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.Blinker;

import com.qualcomm.robotcore.hardware.Gyroscope;

import com.qualcomm.robotcore.hardware.ColorSensor;

import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DcMotorSimple;

import com.qualcomm.robotcore.util.ElapsedTime;

@TeleOp

public class HelloWorld_TeleOp extends LinearOpMode {
private Gyroscope 1imu;
private ColorSensor test_color;
private DcMotor test_motor;
private Servo test_servo;

private DigitalChannel test_touch;

@Override

public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");
test_color = hardwareMap.get(ColorSensor.class, "test_color");
test_motor = hardwareMap.get(DcMotor.class, "test_motor");
test_servo = hardwareMap.get(Servo.class, "test_servo");
test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
telemetry.addData("Status", "Running");
telemetry.update();

@ The code block provides the structure of the template op mode based on the Hello Robot
Configuration and with some comments missing. If another configuration is being used the code
will be slightly different but many of the underlying concepts are the same.

Programming Concepts

At the start of the op mode there is an annotation that occurs before the class definition. This annotation
states that this is a tele-operated (i.e., driver controlled) op mode:

@TeleOp

In Java annotations are metadata, or descriptive information about the code. In this case the annotation is
being used to tell the system that this op mode is tele-operated. Changing the annotation from @TeleOp to
@Autonomous will change the code to an autonomous op mode.

public class HelloWorld_TeleOp extends LinearOpMode {

https://en.wikipedia.org/wiki/Java_annotation

You can also see that the OnBot Java editor created five private member variables for this op mode. These
variables will hold references to the five configured devices that the OnBot Java editor detected in the active
configuration.

private Gyroscope imu;

private ColorSensor test_color;
private DcMotor test_motor;
private Servo test_servo;

private DigitalChannel test_touch;

Next, there is an overridden method called runOpMode . Every op mode of type LinearOpMode must
implement this method. This method gets called when a user selects and runs the op mode.

@Override
public void runOpMode() {

Hardware mapping was introduced in the configuration section, as a two part process. The first part of the
process was creating a configuration file. The second part of the process is retrieving references to
hardware devices from the hardwareMap object.

@ The hardwareMap objectis available to use inthe runOpMode method. It is an object of type
hardwareMap class.

At the start of the runOpMode method, the op mode uses the hardwareMap objectto get references to
the hardware devices that are listed in the Robot Controller’s configuration file:

imu = hardwareMap.get(Gyroscope.class, "imu");

test_color = hardwareMap.get(ColorSensor.class, "test_color");
test_motor = hardwareMap.get(DcMotor.class, "test_motor");
test_servo = hardwareMap.get(Servo.class, "test_servo");
test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

The hardwareMap.get () method callis used to retrieve the hardware devices and assign them to
variables. The method call accepts two arguments: a reference to the particular class of hardware devices
the device belongs to and the name of the hardware device in the configuration file. The name in the
hardwareMap.get () needs to match the name of the device in the configuration file. If the names do not
match, the op mode will throw a runtime error indicating that it can not find the device.

@ For more information on the runtime error check out the Common Errors in Hardware Mapping
section.

In the next few statements of the example, the op mode prompts the user to push the start button to continue.
It uses another object that is available in the runOpMode method. This objectis called telemetry and the

https://en.wikipedia.org/wiki/Class_(computer_programming)#Member_accessibility
https://en.wikipedia.org/wiki/Object_(computer_science)

op mode uses the addData method to add a message to be sent to the Driver Station. The op mode then
calls the update method to send the message to the Driver Station. Then it calls the waitForStart
method, to wait until the user pushes the start button on the driver station to begin the op mode run.

@ Telemetry is the process of collecting and transmitting data. In Robotics telemetry is often used
to output internal data from actuators and sensors to the Driver Station. This data can then be
analyzed by users to make decisions that can improve code.

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

(0 Alllinear op modes should have a waitForStart statementto ensure that the robot will not
begin executing the op mode until the driver pushes the start button.

After a start command has been received, the op mode enters a while loop and keeps iterating in this loop
until the op mode is no longer active (i.e., until the user pushes the stop button on the Driver Station):

// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
telemetry.addData("Status", "Running");
telemetry.update();

As the op mode iterates in the while loop, it will continue to send telemetry messages with the index of
“Status” and the message of “Running” to be displayed on the Driver Station.

Syntax

Programming languages, much like any language, have a set of guiding rules and principals that allow
statements to be universally understood. Things like punctuation, word structure, and formatting all play a
partin how a line of code is interpreted. In linguistics and computer science the rules that govern the
structure of a sentence are known as syntax.

It is important to understand the syntax for Java, as syntax errors will be common and hard to track without a
basic level of understanding.

Object Oriented Programming

This section dropped a lot of references to methods, object, and classes. These are all intermediate to
advance programming topics often centered around the concept of object oriented programming. The
purpose of the Hello Robot guide is to act as a introductory course to robotics programming rather than deep
dive into programming concepts.

https://en.wikipedia.org/wiki/Java_syntax

However, keep object oriented programming in mind as your skills grow. For now the most important thing to
know is that occasionally methods within the SDK libraries will need to be called in order to perform a
certain task. For instance, the line HelloRobot_TeleOp.opModeIsActive() line callsthe method
opModeIsActive, which isthe procedure in the SDK thatis able to tell when the op mode has been
activate by the driver station phone.

Going forward many of the motor, servo, or sensor specific code will deal with calls to other methods or
classes.

‘ (1) For more information on classes and methods in the SDK check out the Java Doc.

Programming Actuators

Servo Basics

The goal of this section is to cover some of the basics of programming a servo within OnBot Java. By the
end of this section users should be able to control a servo with a gamepad, as well as understand some of
the key programming needs of the servo.

@ This section is considering the Smart Robot Servo in its default mode. If your servo has been
changed to function in continuous mode or with angular limits it will not behave the same using
the code examples below. You can learn more about the Smart Robot Servo or changing the
Servo's mode via the SRS Programmer by clicking the hyperlinks.

With a typical servo, you can specify a target position for the servo. The servo will turn its motor shaft to
move to the target position, and then maintain that position, even if moderate forces are applied to try and
disturb its position.

1500ps

-135° +135°
500ps 2500yps

https://ftctechnh.github.io/ftc_app/doc/javadoc/index.html
https://docs.revrobotics.com/duo-build/actuators/servos/smart-robot-servo
https://docs.revrobotics.com/duo-build/actuators/servos/srs-programmer

For both Blocks and OnBot Java, you can specify a target position that ranges from 0 to 1 for a servo. For a
servo with a 270° range, if the input range was from 0 to 1 then a signal input of 0 would cause the servo to
turn to point -135°. For a signal input of 1, the servo would turn to +135°. Inputs between the minimum and
maximum have corresponding angles evenly distributed between the minimum and maximum servo angle.
This is important to keep in mind as you learn how to code servos.

Programming a Servo

Add the line test_servo.setPosition(1l); tothe op mode while loop.

while (opModeIsActive()) {
test_servo.setPosition(1);
telemetry.addData("Status", "Running");
telemetry.update();

Select Build Everything to build the code.

@ Try running this op mode on the test bed two times and consider the following questions:
e Did the servo move during the first run?

e Did the servo move during the second run?

If the servo did not move switch the test_servo.setPosition(1l); to
test_servo.setPosition(0); and try again.

The intent of the test_servo.setPosition() ; is to setthe position of the servo. If the servo is already
in the set position when a code is run, it will not change positions. Lets try adding the line
test_servo.setPosition(0); tothe code in the initialization section.

public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");
test_color = hardwareMap.get(ColorSensor.class, "test_color");
test_motor = hardwareMap.get(DcMotor.class, "test_motor");
test_servo = hardwareMap.get(Servo.class, "test_servo");
test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

test_servo.setPosition(0);

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)

whilee (PURAGESASERYES Yo (1) 5
telemetry.addData("Status", "Running");
telemetry.update();

@ Try running this op mode on the test bed. Give some time between hitting init and hitting play and
consider the following question:

e Whatis different from the previous run?

The test_servo.setPosition(0); thatwas added inthe step above changes the servo position to O
during the initialization phase, so when the op mode is run the servo will always move to position 1. For
some applications starting the servo in a known state, like at position zero, is beneficial to the operation of a
mechanism. Setting the servo to the known state in the initialization ensures it is in the correct position when
the op mode runs.

Programming a Servo with a Gamepad

The focus of this example is to assign certain servo positions to buttons on the gamepad. For this example
the known state will stay at position 0, so that after initialization the servo will be a the -135 degree position
of the servo range. The following list shows what buttons correspond with which servo position.

Button Degree Position Code Position
Y -135 0

X 0 0.5

B 0 0.5

A 135 1

The best way to switch the servo position will be to use a conditional if/ else 1f statement. Anif
statement considers whether a conditional statement is true or false. If the conditional statement is true a
defined action (like the servo moving) is performed. If the conditional statement is false the action is not
performed.

An if/else if statementtakes in multiple different conditional statements. If the first conditional
statement is found to be false then the second conditional state is analyzed. To better understand this
concept consider the following code:

if (gamepadl.y){
//move to -135 degrees

test_servo.setPosition(0);

} else if (gamepadl.x || gamepadl.b) {

//move to O degrees

test_servo.setPosition(0.5);

} else if (gamepadl.a) {

//move to 135 degrees

test_servo.setPosition(1l);

There are three different paths in this if/else 1if statement. If the first conditional statementis true (the
Y button is pressed) the servo moves to code position 0 and the other conditional statements are ignored. If
the first condition is false (the Y button is not pressed) the second condition is analyzed. This behavior

repeats until a condition is met or all conditions have been tested and found false.

@ | | isalogical operator in Java. This symbol is the Java equivalent of "or." Using this in a
conditional statement says that either button x or button b can be pressed for this condition to be

considered true.

public void

imu

runOpMode () {
= hardwareMap.get (Gyroscope.class, "imu");

test_color = hardwareMap.get(ColorSensor.class, "test_color");

test_motor = hardwareMap.get(DcMotor.class, "test_motor");

test_servo = hardwareMap.get(Servo.class, "test_servo");

test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

test_servo.setPosition(0);

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {

if (gamepadl.y){
//move to -135 degrees
test_servo.setPosition(0);

} else if (gamepadl.x || gamepadl.b) {
//move to O degrees

test_servo.setPosition(0.5);

} else if (gamepadl.a) {
//move to 135 degrees
test_servo.setPosition(1l);

}

telemetry.addData("Status", "Running");
telemetry.update();

Servos and Telemetry

Recall that telemetry is the process of collecting and transmitting data. In Robotics telemetry is used to
output internal data from actuators and sensors to the Driver Station. This data can then be analyzed by
users to make decisions that can improve code.

The most useful telemetry from the servo is the the position of the servo along its 270 degree range. In order
to get that information the following line needs to be used.

test_servo.getPosition();

In the programming essentials section the telemetry.addData(); line was briefly discussed. This
method call takes in a key and variable parameter and outputs the information to the Driver Station. The key
is a string, or a line of text, that should define the variable. In this case the telemetry.addData() ; is
being used to output the position of the servo as it is changed so the key can be "Servo Position" The
parameter however will be the the test_servo.getPosition() ; method call.

double motorPower = 0;
while (opModeIsActive()) {
if (gamepadl.y){
//move to -135 degrees
test_servo.setPosition(0);

} else if (gamepadl.x || gamepadl.b) {
//move to O degrees

test_servo.setPosition(0.5);
} else if (gamepadl.a) {
//move to 135 degrees
test_servo.setPosition(1l);
telemetry.addData("Servo Position'", test_servo.getPosition());

telemetry.addData("Status", "Running");
telemetry.update();

Motor Basics

@ Modify your op mode to add the motor related code. This can be done by clearing out your current

l code modifications or adding the motor related code to your current op mode.

The goal of this section is to cover some of the basics of programming a motor within OnBot Java. By the
end of this section users should be able to control a motor using a gamepad, as well as understand some of
the basics of working with motor encoders.

Driving Motors

Add the line test_motor.setPower (1) ; tothe op mode while loop.

while (opModeIsActive()) {
test_motor.setPower (1) ;

telemetry.addData("Status", "Running");
telemetry.update();

Select Build Everything to build the code.

@ Try running this op mode on the test bed and consider the following questions:
e How fastis the motor running?
e What happens if you change the power from 1 to 0.3?

e What happens if you change the power to -1?

The level of power sent to the motor is dependent on the numerical number assigned to the motor. The
change from 1 to 0.3 decreased the motors speed from 100% of duty cycle to 30% of duty cycle. Meanwhile,
the change to -1 allowed the motor to rotate at 100% duty cycle in the opposite direction. So, power can be
fluctuated to drive a motor forward or backwards.

However, the test_motor.setPower (1) ; line will runthe motor in the assigned direction until
something in the code stops the motor or causes a change in direction.

Driving Motors with the Gamepad

In the previous section you learned how to set the motor to run at a specific power level in a specific
direction. However, in some applications, it may be necessary to control the motor with a gamepad, to easily
change the direction or power level of a mechanism.

For this section lets create a double variable motorPower . This variable will be created within the op
mode but outside of the while loop.

public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");
test_color = hardwareMap.get(ColorSensor.class, "test_color");
test_motor = hardwareMap.get(DcMotor.class, "test_motor");

test_souvh = hardwareMap.get(Bégvoatthamneltestisservolst_touch");
double motorPower = 0;

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {

telemetry.addData("Status", "Running");
telemetry.update();

A double is numerical data type that can store numbers with decimal points. Since the power, or duty cycle,
of the motor runs on a scale between 1 to -1; the motorPower variable will need to be able to hold
numerical data with decimal points.

Consider the following lines of code:

motorPower = - this.gamepadl.left_stick_y;
test_motor.setPower (motorPower) ;

The line motorPower = - this.gamepadl.left_stick_y; takesan numerical inputthat
corresponds with the position of the gamepad joystick as it moves along the y-axis and assigns it as the
motorPower variable. The nextline test_motor.setPower (motorPower) ; setsthe motor power
equal to the motorPower variable.

@ Note that for the Logitech F310 gamepads, the Y value of a joystick ranges from -1, when a
joystick is in its topmost position, to +1, when a joystick is in its bottommost position. In order to
change the directional relationship between the motor and the joystick, so that the topmost
position of the joystick correlates with the forward direction of the motor, a negative symbol, or
negation operator needs to be used.

// run until the end of the match (driver presses STOP)
double motorPower = 0;
while (opModeIsActive()) {

motorPower = - this.gamepadl.left_stick_y;

test_motor.setPower (motorPower) ;

telemetry.addData("Status", "Running");
telemetry.update();

Motors and Telemetry

Recall that telemetry is the process of collecting and transmitting data. In Robotics telemetry is used to
output internal data from actuators and sensors to the Driver Station. This data can then be analyzed by
users to make decisions that can improve code.

One of the most common forms of telemetry data from motors is the data pulled from the motor encoder. REV
DC Motors, like the Core Hex Motor, are equipped with internal encoders that relays positional information in
the form of counts. In order to get information from the encoders the following line needs to be used:

test_motor.getCurrentPosition();

In the programming essentials section the telemetry.addData() ; line was briefly discussed. This
method call takes in a key and variable parameter and outputs the information to the Driver Station. The key
is a string, or a line of text, that should define the variable. In this case the telemetry.addData() ; is
being used to output the position of the motor in the form of encoder counts so the key can be "Encoder
Value." The parameter however will be the the test_motor.getCurrentPosition(); method call.

double motorPower = 0;
while (opModeIsActive()) {
motorPower = - this.gamepadl.left_stick_y;

test_motor.setPower (motorPower) ;

telemetry.addData("Encoder Value", test_motor.getCurrentPosition());
telemetry.addData("Status", "Running");

telemetry.update();

@ For more information on programming encoders check out the Using Encoders page. For more
information the counts per revolution metric and how to use it check out the Encoders page.

Programming Sensors

Touch Sensor Basics

The goal of this section is to cover some of the basics of programming a digital device, or Touch Sensor,
within Blocks.

/\ Before programming with a Touch Sensor or other digital device it is important to understand what
a digital device is and what the common applications for digital devices are. Visit the Digital

l Sensors page for more info.
Programming a Digital Device

@ Modify your op mode to add the digital device related code. This can be done by clearing out your
current code modifications or adding the digital device code to your op mode.

The information from digital devices comes in two states, also known as binary states. The most common
way to utilize this information is to use a conditional statement like an if/else statement. The line
test_touch.getState(); collectsthe binary FALSE/TRUE state from the touch sensor and acts as
the condition forthe if/else statement.

if (test_touch.getState()){
//Touch Sensor 1is not pressed
} else {
//Touch Sensor 1is pressed

}

The code above highlights the basics structure of the 1 f/else statement for a digital device. The
FALSE/TRUE state of a REV Touch Sensor corresponds with whether or not the button on the Touch
Sensor is pressed. When the button is not pressed the state of the Touch Sensor is true. When the button is
pressed the state of the Touch Sensor is false. This status is reflected by the comments in the code.

The most basic way to use a digital device is to use telemetry to output information, like the status of the
Touch Sensor button. To do this, lets create a string variable called touchStatus . This variable will be
created within the op mode.

@ String refers to data that consists of a sequence of characters. String datatypes are indicated in
code by a set of quotation marks. For instance, "Hello Robot" is a string but Hello Robot is not.

public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");
test_color = hardwareMap.get(ColorSensor.class, "test_color");
test_motor = hardwareMap.get(DcMotor.class, "test_motor");

test_servo = hardwareMap.get(Servo.class, "test_servo");

test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

String touchStatus = "";

Theline String touchStatus = "'"; declares thatthe variable touchStatus is an empty string
variable. Which means that touchStatus is currently holding a string with zero characters in it.

Add the if/else statementto the while loop.

https://en.wikipedia.org/wiki/String_(computer_science)#String_datatypes

public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");
test_color = hardwareMap.get(ColorSensor.class, "test_color");
test_motor = hardwareMap.get(DcMotor.class, "test_motor");
test_servo = hardwareMap.get(Servo.class, "test_servo");
test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

String touchStatus = "";

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {

if (test_touch.getState()){
//Touch Sensor +is not pressed
} else {
//Touch Sensor 1is pressed

}
telemetry.addData("Status", "Running'");
telemetry.update();

Right now the variable touchStatus is empty, but for this example it should change to reflect the status
of the touch sensor. To do this touchStatus should be setto either "Not Pressed" or "Pressed".

if (test_touch.getState()){
//Touch Sensor +is not pressed

touchStatus = "Not Pressed";
} else {
//Touch Sensor 1is pressed
touchStatus = "Pressed";
}

To display in the information assigned to touchStatus , telemetry needs to be used. In the programming
essentials section the telemetry.addData() line was briefly discussed. This method call takes in a
key and variable parameter and outputs the information to the Driver Station. The key is a string, or a line of
text, that should define the variable. In this case the telemetry.addData() ; is being used to output
changesinthe touchStatus variable so "Touch Status'" would be a good key. The parameter will
be the touchStatus variable. Add this line above the telemetry.update() ; line in the while loop.

telemetry.addData("Touch Sensor'", touchStatus);

Digital Devices as Limit Switches

One of the most common uses for a digital device like a touch sensor is to use it as a limit switch. The intent
of a limit switch is to stop a mechanism, like an arm or lift, before it exceeds its physical limitations. In this
application power needs to be cut from the motor when the limit is met.

Programming a limit switch requires the same if/felse logic applied in the previous section. If the touch
sensor state is true (itis not pressed) the motor will have power. Else (it is pressed) the motor will not have
power.

if (test_touch.getState()){
//Touch Sensor 1is not pressed

test_motor.setPower (0.3)};

} else {
//Touch Sensor 1is pressed
test_motor.setPower (0);

}

The code block above introduces the basics of a limit switch. Like with most sensors, its good to have
telemetry that updates the Driver Station on the status of the sensor. Consider the following code:

public void runOpMode() {

imu = hardwareMap.get(Gyroscope.class, "imu");

test_color = hardwareMap.get(ColorSensor.class, "test_color");
test_motor = hardwareMap.get(DcMotor.class, "test_motor");
test_servo = hardwareMap.get(Servo.class, "test_servo");
test_touch = hardwareMap.get(DigitalChannel.class, "test_touch");

String touchStatus = "";

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {

if (test_touch.getState()){
//Touch Sensor is not pressed
test_motor.setPower(0.3);
touchStatus = "Not Pressed";

} else {
//Touch Sensor 1is pressed

testhd®osoussetPPres$edy ;
}

telemetry.addData("Touch Sensor:", touchStatus);

telemetry.addData("Status", "Running'");
telemetry.update();

Hello Robot - Robot Control

With the basics of controlling actuators and getting feedback from sensors is understood from Hello Robot -
Test Bed, itis time to start configuring and programming our robot for Teleoperated and Autonomous control!

Section Goals of Section

Introduces a potential robot to work with as well a
the configuration file used in the following section

Create a Basic Robot

Differences between differential and
Drivetrain Basics omnidirectional drivetrains and their affect on
teleoperated control types.

@ Before continuing it is recommended to complete, at minimum, a drivetrain. There are a few
different options depending on the kit being used. For this guide the Class Bot V2 is used. Check
out the build guide for full building instructions for the Class Bot V2!

Create a Basic Robot

The graphic below highlights the major hardware components of the Class Bot V2. These components are
important to understand for the configuration process.

4 N\

(1) Control Hub

A\ J

(N\

(2) Drive Motors

A J

(D

https://docs.revrobotics.com/duo-build/ftc-starter-kit-class-bot

(3) Arm Motor

A\ J

4)

(4) Claw Servo

< J

()

(5) Touch Sensor

& J

()
(6) Battery

S J

2 N\
(7) Switch

AN J

The Hello Robot - Configuration section focused on configuring the components in the Test Bed. In order to
continue forward with the Robot Control programming sections, a new configuration file must be made for
the components on the robot. Itis your choice what variable names you would like to assign to your robot,
but for reference this guide will use the following names for each hardware component.

Hardware Component Hardware Type Name

)) REV Robotics UltraPlanetary ,
Right Drive Motor rightmotor
HD Hex Motor

) REV Robotics UltraPlanetary
Left Drive Motor leftmotor
HD Hex Motor

Arm Motor REV Robotics Core Hex Motor arm
Claw Servo Servo claw
Touch Sensor REV Touch Sensor touch

Drivetrain Basics

Before continuing it is important to understand the mechanical behavior of different drivetrains. The two most
common drivetrain categories types are Differential and Omnidirectional. The Class Bot's drivetrain is a
differential drivetrain. The table below highlights the main features of these two types of drivetrains.

Differential Omnidirectional

Differential Drivetrains Omnidirectional Drivetrains

Can move in any direction due to rollers on the

Most common type of drivetrain
wheels

Varies power to each wheel to change heading o1

Moves along a central axis
strafe

Applies more power to one side of the drivetrain

i More complex programming
than the other to change heading

Can have different names depending on the
number of motors, wheels, and wheel types used
(4WD, 6WD, West Coast)

Requires more than 2 motors (depending on
specific type and configuration)

Teleoperated Control Types

There are a number of different ways to control a robot teleoperated. When using the REV Control System
this is done with a Driver Station Device and gamepads. There are various ways to use a controller to drive
a differential drivetrain. Two of the conventional ways are Tank Drive and Arcade Drive.

Tank Drive

For tank drive, each side of the differential drivetrain is mapped to its own joystick. Changing the position of
each joystick allows the drivetrain to steer and change its heading. Sample code exists in the Robot
Controller Application to control a differential drivetrain in this way.

Arcade Drive

For arcade drive, each side of the differential drivetrain is controlled by a single joystick. Changing position
of the joystick changes the power applied to each side of the drivetrain allowing for a given command.
Arcade drives typically have left/right movement of the joystick set to spin the robot about its axis with

forward/back moving the robot forward and reverse. More information on Arcade drive are found in the Robot
Navigation - Blocks and Robot Navigation - OnBot Java sections.

With the robot configured, a basic understanding of drivetrains, and teleoperated control types, we can move
forward to programming the drivetrain to get the robot moving.

Robot Navigation - Blocks

Introduction to Robot Navigation

As alluded to in the Hello Robot - Robot Control section, robot control comes in many different forms. One of
the control types to consider for robots with drivetrains, is robot navigation.

Robot navigation as a conceptis dependent on the type of drivetrain and the type of operation mode. For
instance, the code to control a mecanum drivetrain differs from the code used to control a differential
drivetrain. There is also a difference between coding for teleoperated driving, with a gamepad, or coding for
autonomous, where each movement of the robot must be defined within code.

The following section goes through some of the basics of programming for a differential drivetrain, as well as
how to set up a teleoperated arcade style drivetrain code. The concepts and logic highlighted in this section
are applicable to autonomous control, including the section Elapsed Time.

Sections Goals of Section

What to consider when programming drivetrain
Basics of Programming Drivetrains motors and how to apply this to an arcade style
teleoperated control.

Basics of Programming Drivetrains

For controlling the Class Bot V2 drivetrain, being able to control two motors simultaneously is important.
This is done through the dual motor block within Blocks. To access the dual motor block, at the top of the
Categorize Blocks section there is a drop down menu for Actuators. Selecting DcMotor will drop down the
options Dual and another drop down menu Extended. Select Dual to access the dual motor blocks.

—* LinearOpMode
=1 Gamepad — LinearOpMode

= Gamepat set K

> DcMotor | ___—{ ¥ Actuators

—

= Servo ¥ DcMotor o 1
P Sensors
leftmotor + e 1

p Other Devices » Extended
P Android /= Servo

p Utilities

Programming Drivetrain Motors

~ Power -

Add the larm * RCM - 1 block to op mode while loop.
leftmotor ~ R 1

“runOphode
Put intiakzaton blocks here
= Oual Drive J waitf orStart

J _J Dual Drive B opModeisActive
Put run blocks here

Lo white -

Ll Put loop blocks here.
set
arm - R
leftmotor - 1

@ When there are multiple of the same type of variable (such as multiple Dc Motor variables) the
variable specific blocks will choose a default variable based on alphabetical order. For this
example Op Mode Dc Motor blocks will default to the arm variable.

Use the variable drop down menu on the block to change from arm to rightmotor.

leftmotor
rightmotor -

Put initialization blocks here.

call - waitForStart

3 =T Dual Drive

do

| repeat (REED | call .

do
st

to

to

. opModelsActive

@ Before moving on try running the code as is and consider the following questions:
e What behavior is the robot exhibiting?
e What direction is the robot spinning in?

When motors run at different speeds they spin along their center pivot point. But the motors are
both set to a power (or duty cycle) of 1?

DC Motors are capable of spinning in two different directions depending on the current flow: clockwise and
counter clockwise. When using a positive power value the Control Hub sends current to the motor for it to
spin in a clockwise direction.

With the Class Bot and current code, both motors are currently set to run in the clockwise direction. If you set
the robot on blocks and run the code again though, you can see that the motors run in opposing directions.
With the mirrored way the motors mount to the drivetrain, one motor is naturally the inverse of the other.

Why would the inverse motor cause the robot to spin in a circle? Both speed and direction of rotation of the
wheels impact the overall direction the robot moves in. In this case, both motors were assigned to have the
same power and direction but how the motors transfer motion to the wheels, causes the robot to spin instead
of moving forward.

(1) Check the Introduction to Motion section for more information on the mechanics of transferring
motion and power.

In the info block above you were asked to determine which direction the robot spun in. The robot pivots in
the direction of the inversed motor. For instance, when the right motor is the inversed motor the robot will
pivot to the right. If the left motor is the inversed motor the robot will pivot to the left.

The Affect of Drivetrain Motors on Drivetrain Movement

] [T mll T

https://docs.revrobotics.com/duo-build/actuators/introduction-to-motion

For the Class Bot, the robot pivots to the right, so the right motor will be reversed. Add

@n‘gmmotor ~ W Oirection - JOI[. Direcion REVERSE ~ t0 the op mode class, under the | Put initialization blocks here.l
comment block.

P rmats st b e
| - rightmotor - | Direction - L&l Direction ~REVERSE
- lTI oD
] Onvaw Drve B ophhoteind tve
Sl PV e ks have
wer 0D] Ovw Drve B ophhotmindc Soe
ol PV e Sk heve
w il
L D ¥
e

Adding the (ETightmotor W Direction JIC Direction REVERSE _ block changes the direction of the right motor
so that both motors will run in the same direction when power is set to one.

Teleoperated Driving - Arcade Style

Recall that when the motors were running in opposing directions the robot spun in circles. This same logic

will be used to control the robot using the arcade style of control mentioned in the Hello Robot - Autonomous
Robot section.

Programming with gamepads

To start, create two variables x and y . Add the andmblocks to the while loop.

set 8B to
set to
e

y will be assigned as q gamepad1 ~ l RightStickY - I which is the y-axis of the right joystick.

@ Remember positive/negative values inputted by the gamepad's y-axis are inverse of the
positive/negative values of the motor.

Assign x as the q gamepad1 - I RightStickX + I which is the x axis of the right gamepad joystick. The x-

axis of the joystick does not need to be inverted.

set £ to : gamepad1 - | RightStickX -
set to ‘gamepad1 - | RightStickY -

-
-

The BEE8 x » B6REE gamepadi - | RightStickX « | and FEE8y « kG " gamepad1 + = RightStickY * || block sets

assign values from the gamepad joystick to x and y . As previously mentioned, the joystick gives values

along a two dimension coordinate system. y receives the value from the y- axis and x receives the value

framn tha v oAvia DAth Avia Anibnaibvialiians lhAabhaiAaAan 1 AnAd 1

To better understand consider the following table. The table shows the expected value generated from
moving the joystick all the way in one direction, along the axis. For instance, when the joystick is pushed all
the way in the upwards direction the coordinate values are (0,1).

@ The table below assumes that the the yvalues from the gamepad have been inverted in code

when assigned to the variable y .

Joystick Direction X y

Now that you have a better understanding of how the physical movement of the gamepad affects the
numerical inputs given to your Control System; its time to consider how to control the drivetrain using the
joystick. Recall, from the Programming Drivetrain Motors section, that the speed and direction of a motor

- Power - |
plays a large partin how the drivetrain moves. The numerical outputs for [rightmotor - R 1 - determine the

to Bl
speed and direction of the motors. For instance, when both motors are set to 1 they move in the forward
direction at full speed (or 100% of duty cycle).

Much like the gamepads, the numerical value for setPower isinarange of-1to 1. The absolute value of
the assigned number determines percentage of duty cycle. As an example, 0.3 and -0.3 both indicate that
the motor is operating at a duty cycle of 30%. The sign of the number indicates the direction the motor is
rotating in. To better understand, consider the following graphic.

-1 0 1

Full Speed 'No Movement | Full Speed

When a motor is assigned a setPower value between -1 and 0, the motor will rotate in the direction it
considers to be reverse. When a motor is assigned a value between 0 and 1, it will rotate forward.

In the Programming Drivetrain Motors section, it was discussed that a robot rotates when the motors are
moving in opposing directions. However, this has more to do with both speed and direction. To think of it
numerically, a differential drivetrain will turn to the right when the setPower value for the right motor is
less than that of the left motor. This is exhibited in the following example.

R
L

=

O

S=id Power +

When both motors are [rightmotor ~ REEL 1 the robot will run at full speed in a mostly straight line. However,
to Bl

-5 Power |
when the rightmotor is running in the same direction but at a lower speed, such as [rightmotor ~ REA ' 0.3 | the

to Ol
robot will turn or rotate to the right. This is likely to be an arching movement that is not as sharp as a full
pivot. In contrast when the rightmotor is set to full speed but in the opposite direction of the leftmotor, the
robot pivots to the right. So, mathematically the following is considered to be true:

rightMotor = leftMotor Forward or Reverse
rightMotor > leftMotor Left Turn
rightMotor < leftMotor Right Turn

As previously implied, *gamepad1 v !RightStickX vl and ‘gamepam v lRightStickY vl send values to
-5 Power + |

the Control System from the game pad joystick. In contrast, OB 1 interprets numerical
to Bl

information set in the code and sends the appropriate current to the motors to dictate how the motors
behave.

In an arcade drive, the following joy stick inputs (directions) need to correspond with the following outputs
(motor power values).

Joystick Direction (x,y) rightmotor leftmotor

-1 -1
1 -1
-1 1

To get the outputs expressed in the table above, the gamepad values must be assigned to each motor in a
meaningful way, where. Algebraic principles can be used to determine the two formulas needed to get the
values. However, the formulas are provided below.

rightmotor =y — x
leftmotor = y + x

From the math menu grab the % 1 [-=1" 1 Band % 1 =T 1 } blocks and add them to the respective

<=ie| Power

Al

|1 Power - |
rightmotor - 1

leftmotor - 2o

rightmotor - R
leftmotor - 10

With this you now have a functional teleoperated arcade drive!

Elapsed Time - Blocks

Introduction to Elapsed Time

One way to create an autonomous code is to use a timer to define which actions should occur when. Within
the SDK actions can be set to a timer by using ElapsedTime.

Timers consist of two main categories: count up and count down. In most applications a timer is considered
to be a device that counts down from a specified time interval. For instance, the timer on a phone or a
microwave. However, some timers, like stopwatches, count upwards from zero. These types of timers
measure the amount of time that has elapsed.

ElapsedTime is a count up timer. Registering the amount of time elapsed from the start of a set event, like
the starting of a stopwatch. In this case, it is the amount of time elapsed from when the timer is created or
reset within the code.

The ElapsedTime timer starts counting the amount of time elapsed from the point of its creation within a
code. For instance, in this section ElapsedTime will be created in the section of code that occurs when the
op mode is initialized. There is no option to stop the ElapsedTime timer. Instead, the

ElapsedTime reset L))
= - block can be used within your code to reset the timer at various
{elapsedTimeVariable} -]

intervals.

Once the timer has been reset, the amount of time that has elapsed is queried by calling blocks like

Eiapseatime W Seconds - . . .
m — . The time given by the queried blocks can be used in loops to
{elapsedTimeVariable} * }|

dictate how long a specific action should take place.

Sections Goals of Section

Learning the logic needed to use elapsed time for

Basics of programming with Elapsed Time
autonomous control.

Basics of Programming with Elapsed Time

Since this section focuses on creating an autonomous program using ElapsedTime it is important to
understand where the elapsed time related blocks are located. At the top of the Categorize Blocks section
there is a drop down menu for Utilities. The utilities drop down is a list of various utilities in alphabetical
order. Towards the bottom of the the list select Time drop down menu. From there you can select Elapsed
Time.

¥ Utilities
Acceleration
AngleUnit

Annnlarvelnrity

Axis

¢ Color
Dbglog
MagneticFlux

DLELE = ElapsedTime
Orientation T 1= ElapsedTime
PIDF Coefficients

Welocity

J

Position
Quaternion
Range
Telemetry
Temperature

|P Time

Vector

Velocity

Programming with Elapsed Time

Start by creating a new op mode call HelloWorld_ElapsedTime using the BasicOpMode sample.

@ When creating an op mode a decision needs to be made on whether or not to set it to
autonomous mode. For applications under 30 seconds, typically required for competitive game
play changing the op mode type to autonomous is recommended. For applications over 30
seconds, setting the code to the autonomous op mode type will limit your autonomous code to 30
seconds of run time. If you plan on exceeding the 30 seconds built into the SDK, keeping the
code as a teleoperated op mode type is recommended.

For information on how op modes work please visit the Introduction to Programming section.

For more information on how to change the op mode type check out the Test Bed - Blocks
section.

Create New Op Mode

Op Mode Name: [HelloWorld_ElapsedTime] |

Sample: | BasicOpMode V|

Create a variable named runtime.

New variable name:

| runtime] ‘

Cancel

@ For information on creating variables in blocks please revisit the Test Bed - Blocks section.

Add the block to the op mode below the Eut initialization blocks here.J| comment block.

et N = (
I Pt loop bhocks heve
ol Teematy J

In order to utilize elements of the ElapsedTime, runtime will actasthe ElapsedTime variable. Add

the MG ElapsedTime | block to the block.

-1 runtime v [LG50 ElapsedTime

Before moving on to the rest of the ElapsedTime structure lets go ahead and add the motor related
set

blocks. Add [rightmotor - R&8L" 1 to the op mode to the while loop.
to Nl

@ When there are multiple of the same type of variable (such as multiple Dc Motor variables) the
variable specific blocks will choose a default variable based on alphabetical order. For this
example Op Mode Dc Motor blocks will default to the arm variable. Click the arrow next to the
motor name to change the arm motor variable to the rightmotor variable. Use the variable drop

\ down menu on the block to change from arm to rightmotor.

- 0

- Power -
“rightmotor + L1 1
leftmotor + 160 1
‘l.'l 0P DhOx 1""

If you recall from Programming Drivetrain Motors article; the motors on the drivetrain mirror each other. The
mirrored nature of the motor mounting causes the motors to rotate in opposing directions. In order to remedy
this discrepancy the direction of the right motor needs to be reversed. Add the
@rightmotor “ W oiection - JY[Direction REVERSE block to the op mode under the the

set to [new block set.

-0 rightmotor - | Direction =+ "/ Direction REVERSE

The goal is to have the motor move forward for 3 seconds. To accomplish this the While loops needs to be
edited so that it triggers when the op mode is active and the ElapsedTime timer is less than or equal to 3

seconds. Lets start by creating the less than or equal to condition. Grab the 'IE] from the Logic
menu.

Logic
Loops
Math
Text
Lists
Variables
Functions
Miscellaneous

Select the M - . block from the Elapsed Time menu. Drop the block
{elapsedTimeVariable} + J{

into the left side of the iEI block. Use the drop down menu to change the generic
i{elapsedTimeVariable} v I to the variable.

ElapsedTime | Seconds * -mi
timer |

Grab the E block from the Math menu.

Logic
Loops
Text

Lists
Variables
Functions
Miscellaneous

Add the number block to the right side of the m] block. Change the number block to 3.

ElapsedTime | Seconds - | (=~ J§[3]
timer |

ElapsedTime | | Seconds ~

Right now the is equal to three. Use the arrow next to the equal sign to

timer
choose the less than or equal to sign from the drop down menu.

ElapsedTime | Seconds - ||~ [< - J§I3]
timer

Set this block set to the side for now. Grab an block from the Logic menu

Logic
Loops
Math
Text
Lists
Variables
Functions
Miscellaneous

Add the call mHeIIoWorIdiEIapsedTimelopModeIsActivel block to the left side of the block.
Add the hegmeRecnie ol ELBOH 1)\ cet o0 the right side of the block.

timer runtime ~

[l HelloWorld_ElapsedTime [l opModelsActive §{ and ~ | ElapsedTime | Seconds - -

IS runtime -

This block set will replace the m HelloWorld_ElapsedTime I opModeIsActivel block that is currently attached

to the while loop. With this block set in place the while loop will now activate when both conditions of the
and block are true.

@ Itis important to know that, within a linear op mode, a while loop must always have the
mHeIIoWorId_EIapsedTimelopModeIsActiveI Boolean as a condition. This condition ensures

that the while loop will terminate when the stop button is pressed.

ST o s e
repeat (TS |

+=|[[| HelloWorld_ElapsedTime [opModelsActive il and ~ | ElapsedTime | Seconds - | - '
UL runtime -
do LT
Ll Power
| Aoy - L
L
- a '

@ Use tape to mark the distance from where the robot starts to where you would like itto end up. Try
running the code using the following conditions:

e Press the init button and immediately press play
e Press the init button, wait 30 seconds and then press play

What difference in behavior did you notice?

Recall thatthe ElapsedTime timer starts when the timer is created, which occurs where the

cEd runtime ~ REMBMET ElapsedTime } block is placed. Since the timer is created prior to

@ HelloWorld_ElapsedTime l waitForStart l , the timer will start when the program is initialized.

If you tested the program you may have noticed that the robot didn't move the during the second run.
Depending on how long you wait to start after initialization the timer may be close to or past 3 seconds by
the time the program is played. To keep this from happening the timer should be reset once the op mode is

||l ElapsedTime |4 reset |

active. Grab the call imer block. Use the drop down menu on the

{elapsedTimeVariable} ~ l

variable block to change the i{elapsedTimeVariable} 'I to .

+-||" ElapsedTime | reset
8 runtime ~

call -
Add the imer | (T B the op mode beneath the (Put run blocks here. | comment and above

the while loop.

- ||l ElapsedTime '

timer

hata d r_ n » L

As mentioned in previous sections, it can be beneficial to have a telemetry output when testing code. In the
following example telemetry is used to output the amount of time that has passed with the timer.

1 runOpMode |

50 runtime + RGBT Elapsed Time
set . [l Direction
=1l HelloWorld_ElapsedTime [waitForStart
@101} 1| HelloWorld_ElapsedTime |4 opModsisActve
do
1= ElapsedTime |1 reset)
timer

4 while - BRI olioWorld. ElapsedTime 14 opModelsActive | and ~

REVERSE

ElapsedTime | Seconds - 1| = - I3}
[y runtime -

do
set
to
to
' call :
key Number of Seconds in Phase 1
number -
| = runtime ~ |

||} Telemetry I update |
—

The above code will allow your motor to drive straight for 3 seconds. Additional movements can be added
by duplicating the while loop. Right click the while loop block and select duplicate

repeat i

Duplicate
Add Comment
Collapse Block
Disable Block

Delets 16 Blocks ||
Help |

Once you have duplicated the while loop you can change some of the basic information like motor power or

WZ|N ElapsedTime [reset |

timer | (YIS block between the

the time interval of the loop. You will also need to add a

two loops.

Full Code Example

S wnGpiiods |

=1 untime - | WM ElapsedTime
| rightmotor - | Direction - | /| Direction
1[I HelloWorld_ElapsedTime [waitForStart
& | |- HelloWorld_ElapsedTime | opModeISActive |
do

-1 ElapsedTime |1 resel]

W runtime - |

s Lwbie - JERERET HelloWorid_ElapsedTime | ophodsisactive J{ and - JIBFE 00 o PRFCe T S Bl o

L7, S runtime - |

REVERSE

(: i\ 8\ Put loop blocks here.

cal :
key Mumber of Seconds in Phase 1
number .
timer
cal :

=1 Eiapseatime Wese]
Ll uniime

repeat [0 z

= T ElzpsedTime || Seconds - 1| = i[5
LW Furime

-~ Fower
righimotor - |
lefimotor |

Number of Seconds in Phase 2
LT[B ElapsedTime
Lo B runtime -}

Encoder Navigation - Blocks

In the previous section you learned about how to use Elapsed Time to allow your robot to navigate the world
around it autonomously. When starting out many of the robot actions can be accomplished by turning on a
motor for a specific amount of time. Eventually, these time-based actions may not be accurate or repeatable
enough. Environmental factors, such as the state of battery charge during operation and mechanisms
wearing in through use, can all affect time-based actions. Fortunately, there is a way to give feedback to the
robot about how it is operating by using sensors; devices that are used to collect information about the robot
and the environment around it.

With Elapsed Time, in order to get the robot to move to a specific distance, you had to estimate the amount
of time and the percentage of duty cycle needed to get from point a to point b. However, the REV motors
come with built in encoders, which provide feedback in the form of ticks (or counts) per revolution of the
motor. The information provided by the encoders can be used to move the motor to a target position, or a
target distance.

Moving the motors to a specific position, using the encoders, removes any potential inaccuracies or
inconsistencies from using Elapsed Time. The focus of this section is to move the robot to a target position
using encoders.

@ There are two articles in that go through the basics of Encoders. Using Encoders goes through
the basics of the different types of motor modes, as well as a few application examples of using
these modes in code. In this section we will focus on using RUN_TO_POSITION .

The other article, Encoders, focuses on the general functionality of an encoder.

Itis recommended that you review both articles before moving on with this guide.

Basics of Programming with Encoders

Start by creating a basic op mode called HelloRobot_EncoderAuton.

@ When creating an op mode a decision needs to be made on whether or not to set it to
autonomous mode. For applications under 30 seconds, typically required for competitive game
play changing the op mode type to autonomous is recommended. For applications over 30
seconds, setting the code to the autonomous op mode type will limit your autonomous code to 30
seconds of run time. If you plan on exceeding the 30 seconds built into the SDK, keeping the
code as a teleoperated op mode type is recommended.

For information on how op modes work please visit the Introduction to Programming section.

For more information on how to change the op mode type check out the Test Bed - Blocks
section.

Add the @rightmotor “ W oiction - P Direction REVERSE block to the op mode under the
Qut initialization blocks here.] .This will change the direction of the rotation of the right motor to be the same
direction as the left motor.

set . o0 Direction REVERSE
] HetoRotor £ ncocerAuton I wadf or Start
_J] HedoRobot _E ncoder Auton Bl opModeisActve
Sl PVt run Dlocks here
mpet L _] HedoRobot E ncoderAuton il opModeisActve
I Pt loop Dlocks here

@ For more information on the directionality of motor check out the Basics of Programming
Drivetrains section.

Recall from Using Encoders that using RUN_TO_POSITION mode requires a three step process. The first

set
step is setting target position. To set target position, grab the larm * RGN 0 block and add it to the op
0

leftmotor - R

mode under the (Put run blocks here. § comment. To get a target position that equates to a target distance
requires so calculations, which will be covered later. For now, set target position to 1000 ticks.

@ When there are multiple of the same type of variable (such as multiple Dc Motor variables) the
variable specific blocks will choose a default variable based on alphabetical order. For this
example Op Mode Dc Motor blocks will default to the arm variable. Click the arrow next to the
motor name to change the arm motor variable to the rightmotor variable. Use the variable drop
down menu on the block to change from arm to rightmotor.

leftmotor
rightmotor -

M :

Pt run blocks heve
-~ TargetPosition - |
“rightmotor - 1
leftmotor + |1
wert LB
I P\t loop Blocks here

_J Telemetry BB upx

The next step is to set both motors to the RUN_TO_POSITION mode. Place the
<14 Mode

=11 TargetPosition
rightmotor » Jel{ RunMode ~ RUN_TO_POSITION block beneath the rightmotor ~ Sl 1000 plock.
[RunMode RUN_TO POSITION o 1000

PN run Bocks here

==& TargetPosition -
to
to

| Mode - |
rightmotor - 1) RunMode RUN TO POSITION

leftmotor - L1 RunMode RUN_TO POSITION
wer L9 ‘

R PV oo

The main focus of the three step process is to set a target, tell the robot to move to that target, and at what
speed (or velocity) the robot should get to that target. Normally, the recommended next step is to calculate
velocity and set a target velocity based on ticks. However, this requires quite a bit of math to find the
appropriate velocity. For testing purposes, its more important to make sure that the main part of the code is

=11 Power ~

working before getting too deep into the creation of the code. Since the {rightmotor ~ R function was
to

covered in previous sections and will communicate to the system what relative speed (or in this case duty

cycle) is needed to get to the target, this can be used in the place of velocity for now.

~1 Power - | " Mode - |
Add the [rightmotor - REEL 1 block to the op mode beneath the [rightmotor * ESEL RunMode RUN_TO_POSITION

leftmotor + fGr(1 leftmotor + Fiel{ RunMode ~ RUN_TO_POSITION

block. Change the duty cycle (or power) of both motors to 0.8, instead of 1.

L L) » hawe
- TargetPosition - |
rightmotor + |+
leftmotor + L&)l 1000

| Mode -

rightmotor - Le'| RunMode RUN_TO POSITION
leftmotor - Lo RunMode RUN_TO_POSITION
=1 Power - |
“rightmotor - 11| 0.8
leftmotor -)| 0.8
wer C20

i e—

Now that all three RUN_TO_POSITION steps have been added to the code the code can be tested.
However, if you want to wait for the motor to reach its target position before continuing in your program, you

can use a while loop that checks if the motor is busy (not yet at its target). For this program lets edit the

repeat RTL1IEN HeIIoRobot EnooderAutonlopModeIsActive] bl k
. ock.

@ Recall that, within a linear op mode, a while loop must always have the

ﬂ“ HelloRobot_EncoderAuton I opModelsActive I Boolean as a condition. This condition ensures

that the while loop will terminate when the stop button is pressed.

Grab an block from the logic menu and add it to the while loop. On the left side of the

block add the o] leftmotor = JlisBusyJ|block. On the right side add the

o=1|N rightmotor ~ [isBusy J| block.

Embed he i another block. Place he
on the right side of the block. On the left side add
theﬂll HelloRobot EncoderAutonlopModeIsActivel block.

Balham A Y e
Solhm A Y e

=EE while - "~ HelloRobot_EncoderAuton |4 opModelsActive JIl and + | "1l leftmotor - | isBusy | and - (A1 rightmotor - 1 isBusy |

@ Right now the while loop is waiting for the right and left motors to reach their respective targets.
There may be occasions when you want to wait for both motors to reach their target position, in

this case the can be used.
1 tefimotor WisBusy Il or - JERCN rightmotor - [isBusy

@ Save and run the op mode two times in a row. Does the robot move as expected the second
time?

Try turning the Control Hub off and then back on. How does the robot move?

In the Basic Encoder Concepts section, itis clarified that ell encoder ports start at 0 ticks when the Control
Hub is turned on. Since you did not turn off the Control Hub in between runs, the second time you ran the op
mode the motors were already at, or around, the target position. When you run a code, you want to ensure

that certain variables start in a known state. For the encoder ticks, this can be achieved by setting the mode

“f Mode ~ |

to [rightmotor - K[RunMode STOP_AND_RESET_ENCODER . Add this block to the op mode in the initialization section.
leftmotor - sl RunMode STOP_AND_RESET_ENCODER

Each time the op mode is initialized, the encoder ticks will be reset to zero.

- =
-1 Mode - |

rightmotor - [0l RunMode STOP AND_RESET ENCODER
leftmotor - L=l RunMode STOP AND RESET ENCODER

Baham A Y EmTew
Botim A Y matew

@ For more information on the motor mode STOP_AND_RESET_ENCODERS check out the
STOP_AND_RESET_ENCODERS section of the Using Encoders guide.

Converting Encoder Ticks to a Distance

In the previous section, the basic structure needed to use RUN_TO_POSITION was created. The

-1 TargetPosition +
placement of rightmotor ~ RGM(' 1000 | within the code, set the target position to 1000 ticks. What is the
leftmotor -~ RGH{ 1000

distance from the starting point of the robot and the point the robot moves to after running this code?

Rather than attempt to measure, or estimate, the distance the robot moves, the encoder ticks can be
converted from amount of ticks per revolution of the encoder to how many encoder ticks it takes to move the
robot a unit of distance, like a millimeter or inch. Knowing the amount of ticks per a unit of measure allows
you to set a specific distance. For instance, if you work through the conversion process and find out that a
drivetrain takes 700 ticks to move an inch, this can be used to find the total number of ticks need to move the
robot 24 inches.

() Reminder that the basis for this guide is the Class Bot V2. The REV DUO Build Systemis a
metric system. Since part of the conversion process references the diameter of the wheels, this
section will convert to ticks per mm.

When using encoders built into motors, converting from ticks per revolution to ticks per unit of measure
moved requires the following information:

e Ticks per revolution of the encoder shaft

e Total gear reduction on the motor

¢ Including gearboxes and motion transmission components like gears, sprockets and chain, or belts
and pulleys

e Circumference of the driven wheels

Ticks per Revolution

The amount of ticks per revolution of the encoder shaft is dependent on the motor and encoder.
Manufacturers of motors with built-in encoders will have information on the amount of ticks per revolution.
For HD Hex Motors the encoder counts 28 ticks per revolution of the motor shatft.

(i) Visitthe manufacturers website for your motor or encoders for more information on encoder
counts. For HD Hex Motors or Core Hex Motors visit the Motor documentation.

Total Gear Reduction

Since ticks per revolution of the encoder shatft is before any gear reduction calculating the total gear
reduction is needed. This includes the gearbox and any addition reduction from motion transmission
components. To find the total gear reduction use the Compound Gearing formula.

For the Class Bot V2 there are two UltraPlanetary Cartridges, 4:1 and 5:1, and an additional gear reduction
from the UltraPlanetary Output to the wheels, 72T:45T ratio.

@ The UltraPlanetary Cartridges use the nominal gear ratio as a descriptor. The actual gear ratios
can be found in the UltraPlanetary Users Manual's Cartridge Details.

Using the compound gearing formula for the Class Bot V2 the total gear reduction is:

3.61 . 5.23 72
1 1

* — = 30.21
45

@ Unlike the the spur gears used to transfer motion to the wheels, the UltraPlanetary Gearbox
Cartridges are planetary gear systems. To make calculations easier the gear ratios for the
Cartridges are already reduced.

https://docs.revrobotics.com/duo-build/ftc-starter-kit-class-bot
https://docs.revrobotics.com/duo-build/actuators/motors
https://docs.revrobotics.com/duo-build/actuators/gears/gears-advanced#compound-gearing
https://docs.revrobotics.com/ultraplanetary/cartridge-details#actual-cartridge-gear-ratios

Circumference of the Wheel

The Class Bot V2 uses the 90mm Traction Wheels. 90mm is the diameter of the wheel. To get the
appropriate circumference use the following formula
circumference = diameter *

You can calculate this by hand, but for the purpose of this guide, this can be calculated within the code.

@ Due to wear and manufacturing tolerances, the diameter of some wheels may be nominally
different. For the most accurate results consider measuring your wheel to confirm that the
diameter is accurate.

To summarize, for the Class Bot V2 the following information is true:

Ticks per revolution 28 ticks
Total gear reduction 30.21
Circumference of the wheel 90mm x

Each of these pieces of information will be used to find the number of encoder ticks (or counts) per mm that
the wheel moves. Rather than worry about calculating this information by hand, these values can be added
to the code as constant variables. To do this create three variables:

® COUNTS_PER_MOTOR_REV
e DRIVE_GEAR_REDUCTION

e WHEEL_CIRCUMFERENCE_MM

(1) The common naming convention for constant variables is known as CONSTANT_CASE, where
the variable name is in all caps and words are separated by and underscore.

Add the variables to the initialization section of the op mode.

. B
2l COUNTS_PER_MOTOR_REV » A
1] DRIVE_GEAR_REDUCTION ~ Rid]

Gl WHEEL CIRCUMFERENCE MM ~ R0]

e - rew

Once the variables are created and added to the op mode, use the E blocks to set the variables to the

respective values. For WHEEL_CIRCUMFERENCE_MM a combination of the , E ,and

blocks to get the circumference of the wheel. The

51 COUNTS_PER_MOTOR_REV - |(s [if 28
-\ DRIVE_GEAR_REDUCTION - |is) (1 30.21
| WHEEL_CIRCUMFERENCE_MM - RERERIFG 3 1)

Now that these three variables have been defined, we can use them to calculate two other variables: the
amount of encoder counts per rotation of the wheel and the number of counts per mm that the wheel moves.

To calculate counts per wheel revolution multiple COUNTS_PER_MOTOR_REV by
DRIVE_GEAR_REDUCTION Use the following formula:

y=axb

Where,

® g = COUNTS_PER_MOTOR_REV

*b

DRIVE_GEAR_REDUCTION

® y = COUNTS_PER_WHEEL_REV

Once COUNTS_PER_WHEEL_REV is calculated, use it to calculate the counts per mm that the wheel
moves. To do this divide the COUNTS_PER_WHEEL_REV by the WHEEL_CIRCUMFERENCE_MM . Use the
following formula.

Where,

® g = COUNTS_PER_MOTOR_REV

*b

DRIVE_GEAR_REDUCTION
® ¢ = WHEEL_CIRCUMFERENCE_MM
® y = COUNTS_PER_WHEEL_REV

® x = COUNTS_PER_MM

@ COUNTS_PER_WHEEL_REV will be created as a separate variable from COUNTS_PER_MM as it
is used in calculating a target velocity.

Create these variables in Blocks and add then to the op mode under the other constant variables.

- : v

L] COUNTS_PER_WHEEL_REV - Ju]
Ll COUNTS _PER MM - Risf

Sotmem VTP mm wmw S w R
Selien VTP aE W wm s

Selm A T mmte
Sotmm AT Fatw

Again math blocks need to be used to define these variables. Lets start with the

COUNTS_PER_WHEEL_REV variable. Add a % 1 - 1% 1 i to the (EJCOUNTS PER WHEEL REV T
block. Add the $f COUNTS_PER_MOTOR_REV -] and f DRIVE_GEAR_REDUCTION - Jblocks to either side

of the nmn block.

- COUNTS_PER_WHEEL_REV - R& COUNTS_PER MOTOR REV - Il x - JL! DRIVE GEAR REDUCTION - |

Since COUNTS_PER_WHEEL_REV has been calculated it can be used to calculate COUNTS_PER_MM

add the 9 1 =10 1 i to the (EYCOUNTS PERMMJTIIL . On the left side of the ®C 1 [= 10 1 | add the

q COUNTS PER WHEEL REV - I block. On the right side of the ¢ 1 L=~ T" 1 § add the
dWHEEL_CIRCUMFERENCE_MM v I .

-4 COUNTS_PER_MM - RCEIERE COUNTS PER WHEEL REV - [l + - || WHEEL CIRCUMFERENCE MM - |

Once COUNTS_PER_WHEEL_MM is set, this completes the conversion process, and all constant variables
are set.

S5 COUNTS_PER _MOTOR_REV + His]

S8 DRIVE_GEAR_REDUCTION ~ Rt 30.21
S8 WHEEL CIRCUMFERENCE MM + BGri(E mm '

-8 COUNTS_PER_WHEEL_REV - R COUNTS _PER MOTOR REV - M x * I'| DRIVE GEAR _REDUCTION - I
=28 COUNTS_PER_MM - R COUNTS PER WHEEL REV - Ml *+ - It] WHEEL CIRCUMFERENCE MM -

Moving to a Target Distance

Now that you have created the constant variables needed to calculate the amount of ticks per mm moved,
you can use this to set a target distance. For instance, if you would like to have the robot move forward two
feet, converting from feet to millimeters and multiplying by the COUNTS_PER_MM will give you the amount of
counts (or ticks) needed to reach that distance.

Create two more variables called leftTarget and rightTarget.Add the and

- TargetPosition - _
24 rightTarget ~ RGW . blocks to the op mode above the | rightmotor - KB 1000 - pblock.
leftmotor - REFI 1000

E L L
PR am Wmw twm A

Right now the main distance factoris COUNTS_PER_MM , however you may want to go a distance thatis in
the imperial system, such as 2 feet (or 24 inches). The target distance in this case will need to be converted
to mm. To convert from feet to millimeters use the following formula:

d(mm) = d(ft) x 304.8

If you convert 2 feet to millimeters, it comes out the be 609.6 millimeters. For the purpose of this guide, lets
go ahead an round this to be 610 millimeters. Multiply 610 millimeters by the COUNTS_PER_MM variable to
get the number of ticks needed to move the robot 2 feet. Since the intent is to have the robot move in a
straight line, setboth the leftTarget and rightTarget,tobe equalto 610* COUNTS_PER_MM

setSHERE RS o | m COUNTS PER MM - ||

Sl rightTarget ~ RN m COUNTS_PER_MM - |

set
Edit the N 1000 | so that both motors are set to the appropriate target position. To do this add

leftmotor - RGH 1000
the W leftTarget * | and B rightTarget * §| blocks to their respective motor.

-1 lefiTarget - R m "« - I{ COUNTS_PER_MM -

-1 rightTarget - R0 [610 [~ - J/ COUNTS_PER MM -
set
L0] I rightTarget ~
(o0 leftTargst - |

Setting Velocity

Velocity is a closed loop control within the SDK that uses the encoder counts to determine the approximate
power/speed the motors need to go in order to meet the set velocity. When working with encoder setting a
velocity is recommended over setting a power level, as it offers a higher level of control.

To set a velocity, its important to understand the maximum velocity in RPM your motor is capable of. For the
Class Bot V2 the motors are capable of a maximum RPM of 300. With a drivetrain, you are likely to get better
control by setting velocity lower than the maximum. In this case, lets set the velocity to 175 RPM

(1) Recallthat setVelocity is measure in ticks per second.

Since RPM is the amount of revolutions per minute a conversion needs to be made from RPM to ticks per
second. To do this divide the RPM by 60, to get the amount of rotations per second. Rotations per second
can the be multiplied by COUNTS_PER_WHEEL_REV , to get the amount of ticks per second.

17
TPS = —5 * CPWR
60

Create a new variable called TPS. Add the & Ll to the op mode under the (‘Put run blocks here_l
comment block.

set to

Add a block to the block. On the right side of the ¥t 1 kX=X 1 J| block
add the 1COUNTS_PER_WHEEL_REV v l One the left side of the nmn add the

n c n block. Add the chosen RPM to the left side of the n [+ v) n block and 60 to the
right side.

set -TPS) to | ' =
mm | x - JiT COUNTS_PER_WHEEL REV

-1 Power + | -1 Velocity
Now that the target ticks per second has been set, swap the [rightmotor - &M 0.8 ' block for a [rightmotor ~ K&}

0
leftmotor - FGH 0.8 leftmotor ~ JH 0
block. Add the to both motors.

S unOphiode
Put initialization blocks here.
ESY' COUNTS_PER_MOTOR_REV - LoIUM 25 |

1 DRIVE_GEAR_REDUCTION - L0)
| WHEEL_CIRCUMFERENCE_MM - | 5o 'co

- COUNTS_PER_WHEEL REV - [0] COUNTS_PER_MOTOR_REV - |l * - ||| DRIVE_GEAR_REDUCTION -

el COUNTS_PER_MM - LU GOUNTS_PER_WHEEL_REV - | = - || WHEEL_GIRCUMFERENCE_MM -
|1 rightmotor - |\ Direction - 50 | Direction

REVERSE

RunMode STOP_AND_RESET_EMCODER
RunMode STOP_AND_RESET_ENCODER

(L8 Put run blocks here.
set KD to 175 [= o1 60 ki JRLCOUNTS PER VHEEL REV

e etzcet LR 610 [- JB COUNTS_PER i -]
sedriontTarget - LREE 610 [x - B CounTs_PER v -)
= { TargetPosition -
“nghtmotor | W nghiTarget
leftmotor - 153
| Mode - |
rightmotor - 00| RunMode RUN_TO_POSITION
Clefimotor - || RunMode RUN_TO_POSITION
- | Velocity - |
rightmotor - [0
lefimotor - [0
L while - | \=| HelloRobot_EncoderAuton [opModelsActive Jl and - | PY imaor - I isBusy B and - |

L[S Put loop blocks here.

Lo] rightmotor - 2

With the velocity set, this is the final thing needed to complete the objective of driving in a straight line.
Consider adding telemetry and other hardware components as you begin fleshing out your full autonomous
code.

Turning the Drivetrain Using RUN_TO_POSITION

set
In the Robot Navigation - Blocks section, the mechanism of OB 1 was discussed.
to Bl

set
B 1 dictates what direction and speed a motor moves in. On a drivetrain the combined

set
In RUN_TO_POSITION mode the encoder counts are used instead rightmotor ~ REBL" 1 | of to dictate

to il
directionality of the motor. If a target position value is greater than the current position of the encoder, the
motor moves forward. If the target position value is less than the current position of the encoder, the motor
moves backwards

Since speed an directionality impacts how a robot turns, target position and velocity need to be edited to get
the robot to turn. Consider the following code:

set (EEESD to
mm < - JE COUNTS PER_WHEEL REV -

CEE leftTarget + Fi) | mm COUNTS PER MM -

== rightTarget - 11(o) m COUNTS PER MM - 1

-1 TargetPosition -
o) U rightTarget -

o0 0 leftTarget ~

“i Mode - |
rightmotor -~ 1¢) | RunMode RUN_TO POSITION

leftmotor - (. RunMode ~ RUN_TO_POSITION

set
rightmotor - 1)
to

repeat ATLIERS 1|l HelloRobot EncoderAuton | opModelsActive | and - | ca"_'mn "1 rightmotor - _‘

[l Put loop bloks here.

(| Telemetry Jif update

The rightTarget has been changed to be a negative target position. Assuming that the encoder starts
atzerodueto STOP_AND_RESET_ENCODER this causes the robot to turn to the right. Velocity is the same
for both motors. If you try running this code, you may notice that the robot pivots along its center of rotation.
To get a wider turn changing the velocity so that the right motor is running at a lower velocity than the left
motor. Adjust the velocity and target position as needed to get the turn you need.

@ For more information on how direction and speed impact the movement of a robot please refer to

-1 Power
the explanation of [rightmotor * M~ 1 ' in the Robot Navigation section.
leftmotor - FOF(1

Robot Navigation - OnBot Java
Introduction to Robot Navigation

As alluded to in the Hello Robot - Robot Control section, robot control comes in many different forms. One of
the control types to consider for robots with drivetrains, is robot navigation.

Robot navigation as a conceptis dependent on the type of drivetrain and the type of operation mode. For
instance, the code to control a mecanum drivetrain differs from the code used to control a differential
drivetrain. There is also a difference between coding for teleoperated driving, with a gamepad, or coding for
autonomous, where each movement of the robot must be defined within code.

The following section goes through some of the basics of programming for a differential drivetrain, as well as
how to set up a teleoperated arcade style drivetrain code. The concepts and logic highlighted in this section
will be applicable the autonomous control section Elapsed Time.

Sections Goals of Section

What to consider when programming drivetrain
Basics of Programming Drivetrains motors and how to apply this to an arcade style
teleoperated control.

Basics of Programming Drivetrains

Programming Drivetrain Motors

Start by creating a basic op mode called DualDrive.

@ Visit the Test Bed - OnBot Java section for more information on creating an op mode. The op
mode below focuses on hardware mapping only the relevant drivetrain motors.

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DcMotorSimple;

@TeleOp

public class DualDrive extends LinearOpMode {
private DcMotor rightmotor;
private DcMotor leftmotor;

@Override
public void runOpMode() {

rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");

waitForStart();

while (opModeIsActive()) {

Since the focus of this section is creating a functional drivetrain in code, lets started by adding
rightmotor.setPower(1l); and leftmotor.setPower (1) ; tothe op more while loop.

while (opModeIsActive()) {
rightmotor.setPower (1) ;
leftmotor.setPower (1) ;

}

@ Before moving on try running the code as is and consider the following questions:
e What behavior is the robot exhibiting?
e What direction is the robot spinning in?

When motors run at different speeds they spin along their center pivot point. But the motors are
both set to a power (or duty cycle) of 1?

DC Motors are capable of spinning in two different directions depending on the current flow: clockwise and
counter clockwise. When using a positive power value the Control Hub sends current to the motor for it to
spin in a clockwise direction.

With the Class Bot and current code, both motors are currently set to run in the clockwise direction. If you set
the robot on blocks and run the code again though, you can see that the motors run in opposing directions.
With the mirrored way the motors mount to the drivetrain, one motor is naturally the inverse of the other.

Why would the inverse motor cause the robot to spin in a circle? Both speed and direction of rotation of the
wheels impact the overall direction the robot moves in. In this case, both motors were assigned to have the
same power and direction but how the motors transfer motion to the wheels, causes the robot to spin instead
of moving forward.

(1) Check the Introduction to Motion section for more information on the mechanics of transferring
motion and power.

In the info block above you were asked to determine which direction the robot spun in. The robot pivots in
the direction of the inversed motor. For instance, when the right motor is the inversed motor the robot will
pivot to the right. If the left motor is the inversed motor the robot will pivot to the left.

https://docs.revrobotics.com/duo-build/actuators/introduction-to-motion

The Affect of Drivetrain Motors on Drivetrain Movement

For the Class Bot, the robot pivots to the right, so the right motor will be reversed. Add the line

rightmotor.setDirection(DcMotorSimple.Direction.REVERSE) ; tothe op mode under the
variable declarations.

public void runOpMode() {

float x;
double y;

rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");

rightmotor.setDirection(DcMotorSimple.Direction.REVERSE) ;
waitForStart();

while (opModeIsActive()) {
rightmotor.setPower (1) ;
leftmotor.setPower (1)

Adding the rightmotor.setDirection(DcMotorSimple.Direction.REVERSE); code line

reverses (or inverses) the direction of the right motor. Both motors now consider the same direction forward
an

Teleoperated Driving - Arcade Style

Recall that when the motors were running in opposing directions the robot spun in circles. This same logic

will be used to control the robot using the arcade style of control mentioned in the Hello Robot - Autonomous
Robot section.

Programming with gamepads

To start, create two variables xand y. Both variables will be doubles.

public void runOpMode() {
double x;

double y;

rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightmotor.setDirection(DcMotorSimple.Direction.REVERSE) ;

waitForStart();

Assigny as y = -gamepadl.right_stick_y; ,whichis the y-axis of the right joystick.

@ Remember positive/negative values inputted by the gamepad's y-axis are inverse of the
positive/negative values of the motor.

Assignthe x asthe x = gamepadl.right_stick_x; ,whichis the x axis of the right gamepad

joystick. The x-axis of the joystick does not need to be inverted.

while (opModeIsActive()) {
X = gamepadl.right_stick_x;
y = —gamepadl.right_stick_y;

rightmotor.setPower (1) ;
leftmotor.setPower (1)}

}

Setting x = gamepadl.right_stick_x; and y = -gamepadl.right_stick_y; assigns
values from the gamepad joystick to x and y. As previously mentioned, the joystick gives values along a
two dimension coordinate system. y receives the value from the y- axis and x receives the value from the x-
axis. Both axis output values between -1 and 1.

To better understand consider the following table. The table shows the expected value generated from
moving the joystick all the way in one direction, along the axis. For instance, when the joystick is pushed all
the way in the upwards direction the coordinate values are (0,1).

@ The table below assumes that the the yvalues from the gamepad have been inverted in code

when assigned to the variable y.

Joystick Direction X y

0 1
0 -1
1 0
1 0

Now that you have a better understanding of how the physical movement of the gamepad affects the
numerical inputs given to your Control System; its time to consider how to control the drivetrain using the
joystick.

@ Recall, from the Programming Drivetrain Motors section, that the speed and direction of a motor

l plays a large partin how the drivetrain moves.

The numerical outputs for setPower determine the speed and direction of the motors. For instance, when
both motors are set to 1 they move in the forward direction at full speed (or 100% of duty cycle). Much like
the gamepads, the numerical value for setPower isin arange of -1 to 1. The absolute value of the
assigned number determines percentage of duty cycle. As an example, 0.3 and -0.3 both indicate that the
motor is operating at a duty cycle of 30%. The sign of the number indicates the direction the motor is rotating
in. To better understand, consider the following graphic.

-1 0 1

Full Speed No Movement Full Speed

When a motor is assigned a setPower value between -1 and 0, the motor will rotate in the direction it
considers to be reverse. When a motor is assigned a value between 0 and 1, it will rotate forward.

In the Programming Drivetrain Motors section, it was discussed that a robot rotates when the motors are
moving in opposing directions. However, this has more to do with both speed and direction. To think of it
numerically, a differential drivetrain will turn to the right when the setPower value for the right motor is less
than that of the left motor. This is exhibited in the following example.

B
 —

—
\

=
e

—

C

When both motors are rightmotor.setPower(1l); leftmotor.setPower (1) ; the robotwill run at

full speed in a mostly straight line. However, when the rightmotor is running in the same direction but at a
lower speed, such as rightmotor.setPower (0.3); leftmotor.setPower(1l); the robotwill
turn or rotate to the right. This is likely to be an arching movement that is not as sharp as a full pivot. In
contrastwhen the rightmotor is setto full speed butin the opposite direction of the leftmotor , the

P T S P Sl L S Y S S N S N I T

rightmotor.setPower

Forward or Reverse
leftmotor.setPower

rightmotor.setPower >

Left Turn
leftmotor.setPower

rightmotor.setPower <

Right Turn
leftmotor.setPower

As previously implied, gamepadl.right_stick_y and gamepadl.right_stick_x send valuesto
the Control System from the game pad joystick. In contrast, the setPower function interprets numerical

information set in the code and sends the appropriate current to the motors to dictate how the motors
behave.

In an arcade drive, the following joy stick inputs (directions) need to correspond with the following outputs
(motor power values).

Joystick Direction X,Y) rightmotor leftmotor

To get the outputs expressed in the table above, the gamepad values must be assigned to each motor in a
meaningful way, where. Algebraic principles can be used to determine the two formulas needed to get the
values. However, the formulas are provided below.

rightmotor =y — x
leftmotor = y + x

Ratherthan setPower (1) ; both the motors can be set to the above formulas. For instance, the right
motor can be setas rightmotor.setPower (y-x); .

while (opModeIsActive()) {
x = gamepadl.right_stick_x;
y = —gamepadl.right_stick_y;

rightmotor.setPower (y-x) ;
leftmotor.setPower (y+x) ;

}

With this you now have a functional teleoperated arcade drive. From here you can start adding hardware
mapping for the other pieces of robot hardware. Below is an outline of the expected code for the Class Bot
with full hardware mapping.

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.Blinker;

import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.hardware.Gyroscope;

import com.qualcomm.robotcore.hardware.DigitalChannel;

import
import

import
import
import

@TeleOp

com.qualcomm.robotcore.eventloop.opmode.TgleO%;
com.qualcomm.robotcore.eventloop.opmode.Disabled;

com.qualcomm. robotcore.hardware.DcMotor;
com.qualcomm. robotcore.hardware.DcMotorSimple;
com.qualcomm.robotcore.util.ElapsedTime;

public class DualDrive extends LinearOpMode {

private Blinker control_Hub;

private DcMotor arm;

private Servo claw;

private Gyroscope imu;

private DcMotor leftmotor;

private DcMotor rightmotor;

private DigitalChannel touch;

@Override

public void runOpMode() {

double x;
double y;

control_Hub = hardwareMap.get(Blinker.class, "Control Hub");
arm = hardwareMap.get(DcMotor.class, "arm");

claw = hardwareMap.get(Servo.class, "claw");

imu = hardwareMap.get(Gyroscope.class, "imu");

leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
touch = hardwareMap.get(DigitalChannel.class, "touch");

rightmotor.setDirection(DcMotorSimple.Direction.REVERSE) ;

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
gamepadl. right_stick_x;

X

y

-gamepadl.right_stick_y;

rightmotor.setPower (y-x);
leftmotor.setPower (y+x) ;

telemetry.addData("Status", "Running");
telemetry.update();

Elapsed Time - OnBot Java

Introduction to Elapsed Time

One way to create an autonomous code is to use a timer to define which actions should occur when. Within
the SDK actions can be setto a timer by using ElapsedTime.

Timers consist of two main categories: count up and count down. In most applications a timer is considered
to be a device that counts down from a specified time interval. For instance, the timer on a phone or a
microwave. However, some timers, like stopwatches, count upwards from zero. These types of timers
measure the amount of time that has elapsed.

ElapsedTime is a count up timer. Registering the amount of time elapsed from the start of a set event, like
the starting of a stopwatch. In this case, it is the amount of time elapsed from when the timer is instantiated or
reset within the code.

The ElapsedTime timer starts counting the amount of time elapsed from the point of its creation within a
code. For instance, in this section ElapsedTime will be created (or instantiated) in the section of code that
occurs when the op mode is initialized. There is no option to stop the ElapsedTime timer. Instead, the reset()
function can be used within your code to reset the timer at various intervals.

One the timer has been reset, the amount of time that has elapsed can be queried by calling methods like
time(), seconds(), or milliseconds(). The time given by the queried methods can be used in loops to dictate
how long a specific action should take place.

@ For more information on the ElapsedTime object check out the Java Docs.

Sections Goals of Section

Learning the logic needed to use elapsed time for

Basics of programming with Elapsed Time
autonomous control.

Programming with Elapsed Time

Start by creating a new op mode called HelloWorld_ElapsedTime using the

BasicOpMode_Linear sample. There are other feature you can select that may make things easier as
you begin to develop your autonomous op modes. For instance, as you may recall, selecting Setup Code
for Configured Hardware creates the necessary references to the hardware map. Another selection you
can make is for the code to be setup as an autonomous op mode. This adds the @QAutonomous annotation
that distinguishes the code as an autonomous op mode in the Driver Station Application.

I ~

https://ftctechnh.github.io/ftc_app/doc/javadoc/index.html

& When creating an op mode a decision needs to be made on whether or not to set it to
autonomous mode. For applications under 30 seconds, typically required for competitive game
play changing the op mode type to autonomous is recommended. For applications over 30
seconds, setting the code to the autonomous op mode type will limit your autonomous code to 30
seconds of run time. If you plan on exceeding the 30 seconds built into the SDK, keeping the
code as a teleoperated op mode type is recommended.

For information on how op modes work please visit the Introduction to Programming section.

New File

File Name

HelloWorldElapsedTime . java

Location

org/firstinspires/ftc/teamcode

» I org firstinspires.ftc.teamcode

Sample

BasicOpMode Linear v

@ Autonomous O TeleOp O Not an OpMode O Preserve Sample
[0 Disable OpMode

Setup Code for Configured Hardware

Cancel

Selecting the features discussed above will allow you to start with the following code.

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.AnalogInput;

import com.qualcomm.robotcore.hardware.Gyroscope;

import com.qualcomm.robotcore.hardware.ColorSensor;

import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DcMotorSimple;

@Autonomous

public class HelloWorld_ElapsedTime extends LinearOpMode {
private DcMotor leftMotor;
private DcMotor rightMotor;

private DcMotor arm;

rivate Servo claw;
brivate DigitalChannel touch;

private Gyroscope 1imu;

@Override

public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");
leftMotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightMotor = hardwareMap.get(DcMotor.class, "rightmotor");
arm = hardwareMap.get(DcMotor.class, "arm");
claw = hardwareMap.get(Servo.class, "claw");
touch = hardwareMap.get(DigitalChannel.class, "touch");

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()){
telemetry.addData("Status", "Running'");
telemetry.update();

Since the focus of this section is Elapsed Time, a variable of ElapsedTime and an instance of
ElapsedTime needs to be created. To do this the following line is needed

private ElapsedTime runtime = new ElapsedTime();

The above line performs two actions. A private ElapsedTime variable called runtime is created. Once
runtime is created and defined as an ElapsedTime variable, it can hold the relevant time information
and data. The other part of the line runtime = new ElapsedTime(); creates an instance of the
ElapsedTime timer object and assigns it to the runtime variable.

Add this line to the op mode with the other private variables.

public class HelloWorld_ElapsedTime extends LinearOpMode {
private DcMotor leftMotor;
private DcMotor rightMotor;
private DcMotor arm;
private Servo claw;
private DigitalChannel touch;
private Gyroscope 1imu;
private ElapsedTime runtime = new ElapsedTime();

The goal for this example is to have a series of actions performed on timed intervals, like driving forward for

three seconds. Another way to think about it is that the robot drives forward while the ElapsedTime timer
is less than or equal to three seconds or runtime.seconds () <= 3.0.Forthis particular example the
best way to achieve this goal is to use a while loop. Replace the default op mode while loop with the
following loop.

waitForStart();
while (runtime.seconds() <= 3.0) {

@ Itis important to know that, within a linear op mode, a while loop must always have the
opModeIsActive () Boolean as a condition. This condition ensures that the while loop will
terminate when the stop button is pressed.

While loops run when the condition is true and stop when the condition is false. In this case, the while loop
should only start if both conditions (opModeIsActive() and runtime.seconds() <= 3.0)are
true. The while loop should terminate when the runtime.seconds () > 3 is greater than three seconds
or the stop button on the driver station is pressed. To accomplish this the logical operator && needs to be
used.

@ && is alogical operator in Java. This symbol is the Java equivalent of "and." Using this in a
conditional statement requires that both statements need to be true in order for the overall
condition to be true.

waitForStart();
while (opModeIsActive() && (runtime.seconds() <= 3.0)) {

Recall thatthe ElapsedTime timer starts when itis instantiated or reset. Since the timer is being
instantiated when the runtime variable is being created, and the variable creations are happening before the
waitForStart(); command is written;the timer will start when the op mode is initialized rather than
when the op mode is started. This can cause issues on consistency in the robots performance, depending
on the delay between initialization and start.

() Consider the following scenario:

In a competition setting, teams are often required to initialize their robot prior to the start of a
match. This means that a robot can sit in initialization anywhere from a few seconds to a few
minutes. If an autonomous code is centered around using an ElapsedTime timerthat begins
upon instantiation, the longer a robot is sitting in initialization the less likely itis to run as
expected.

In order to avoid issues from a time delay between initialization and start, a timer reset can be added to the

rnda AAdA tha lina ritnt+aima

waitForStart();
runtime.reset();
while (opModeIsActive() && (runtime.seconds() <= 3.0)) {

rocoa+ (\ - hahtnoan tha wiad+EAavrQ+av+ /)« ~nmmand and tha whila lInan

Now the timer is reset, lets go ahead and add the motor related code. If you recall from Programming
Drivetrain Motors article; the motors on the drivetrain mirror each other. The mirrored nature of the motor
mounting causes the motors to rotate in opposing directions. In order to remedy this discrepancy the
direction of the right motor needs to be reversed. Add the following lines of code to the op mode above the

waitForSta

rt();

command.

rightMotor.setDirection(DcMotor.Direction.REVERSE) ;

Now, within the while loop add the lines leftmotor.setPower (1); and

rightmotor.setPower (1) ; to setboth motors to run at full speed in the forward direction.

package org.firstinspires.ftc.

import com.
import com.
import com.
import com.
import com.
import com.
import com.
import com.
import com.
import com.
import com.

import com.

@Autonomous

qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.
qualcomm.

qualcomm.

robotcore.
robotcore.
robotcore.
robotcore.
robotcore.
robotcore.

robotcore.

robotcore

robotcore.
robotcore.
robotcore.
robotcore.

teamcode;

eventloop.opmode.LinearOpMode;
hardware.AnalogInput;
hardware.Gyroscope;
hardware.ColorSensor;
hardware.Servo;
hardware.DigitalChannel;

eventloop.opmode.Autonomous;

.eventloop.opmode.TeleOp;

eventloop.opmode.Disabled;
hardware.DcMotor;
hardware.DcMotorSimple;
util.ElapsedTime;

public class HelloWorld_ElapsedTime extends LinearOpMode {

private
private
private
private
private
private

private

@Overri

DcMotor leftMotor;

DcMotor rightMotor;

DcMotor arm;

Servo claw;

DigitalChannel touch;

Gyroscope imu;

ElapsedTime

de

public void runOpMode() {

imu

runtime = new ElapsedTime();

= hardwareMap.get(Gyroscope.class, "imu");

leftMotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightMotor = hardwareMap.get(DcMotor.class, "rightmotor");

arm = hardwareMap.get(DcMotor.class, "arm");
claw = hardwareMap.get(Servo.class, "claw");
touch = hardwareMap.get(DigitalChannel.class, "touch");

rightMotor.setDirection(DcMotor.Direction.REVERSE);

telemetry.addData("Status", "Initialized");
telemetry.update();
// Wait for the game to start (driver presses PLAY)

waitForStart();
// run until the end of the match (driver presses STOP)

runtime.reset();

while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
leftMotor.setPower (1)}
rightMotor.setPower (1) ;

You now have the basic code you need to have your robot drive forward for three seconds. This should give
you a basic sense of coding with ElapsedTime . Other actions like opening and closing a claw, or lifting
an arm can be coded into your autonomous program.

As advised in previous sections, it is beneficial to add telemetry to certain code to get the feedback data you
want or need. For this example, the telemetry will display how many seconds have elapsed for each leg of
the robots journey.

while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
leftMotor.setPower (1) ;
rightMotor.setPower (1) ;
telemetry.addData("Leg 1", runtime.seconds());
telemetry.update();
}

For this particular guide, the end goal is to test the accuracy of a robot driving forward from point a to pointb
and then driving backwards back to point a. In order to do that another section of code based off the timer
needs to be written. One way to do this is to to copy the while loop that you already made and make the
necessary edits like switching the direction of power to the motors.

runtime.reset();
while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
leftMotor.setPower (1) ;
rightMotor.setPower (1)
telemetry.addData("Leg 1", runtime.seconds());
telemetry.update();
}

runtime.reset();

whilfeggﬁgggg¥§é%ﬁgwgﬁk_§§;(runtime.seconds() <= 3.0)) {

rightMotor.setPower (-1);
telemetry.addData("Leg 2", runtime.seconds());
telemetry.update();

}

Such as:

while(opModeIsActive() && (runtime.seconds() > 3.0) &&

runtime.seconds() <=6.0)

the amount of code changes that may need to be made while testing the code.

Full Code Example

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.AnalogInput;

import com.qualcomm.robotcore.hardware.Gyroscope;

import com.qualcomm.robotcore.hardware.ColorSensor;

import com.qualcomm.robotcore.hardware.Servo;

import com.qualcomm.robotcore.hardware.DigitalChannel;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DcMotorSimple;
import com.qualcomm.robotcore.util.ElapsedTime;

@Autonomous

public class HelloWorld_ElapsedTime extends LinearOpMode {
private DcMotor leftMotor;
private DcMotor rightMotor;
private DcMotor arm;
private Servo claw;
private DigitalChannel touch;
private Gyroscope 1imu;
private ElapsedTime runtime = new ElapsedTime();

@Override
public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");

@ Notice that an additional runtime.reset(); was added to the code above. The other option
for a second while loop would have involved adding an additional condition to the while loop.

The choice to reset the timer before starting a new leg of the robots journey was made to reduce

LeERMnSesr==hRsAuREPYURBPEEE(ROURERErCLaass , ke fEHRRBESY) ;

arm = hardwareMap.get(DcMotor.class, "arm");

claw = hardwareMap.get(Servo.class, "claw");

touch = hardwareMap.get(DigitalChannel.class, "touch");
leftMotor.setDirection(DcMotor.Direction.FORWARD); // Set to REVERSE if using AndyMar
rightMotor.setDirection(DcMotor.Direction.REVERSE);

telemetry.addData("Status", "Initialized");
telemetry.update();

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)

runtime.reset();

while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
leftMotor.setPower (1)}
rightMotor.setPower (1)
telemetry.addData("Leg 1", runtime.seconds());
telemetry.update();

runtime.reset();

while (opModeIsActive() && (runtime.seconds() <= 3.0)) {
leftMotor.setPower (-1);
rightMotor.setPower (-1);
telemetry.addData("Leg 2", runtime.seconds());

telemetry.update();

Encoder Navigation - OnBot

In the previous section you learned about how to use Elapsed Time to allow your robot to navigate the world
around it autonomously. When starting out many of the robot actions can be accomplished by turning on a
motor for a specific amount of time. Eventually, these time-based actions may not be accurate or repeatable
enough. Environmental factors, such as the state of battery charge during operation and mechanisms
wearing in through use, can all affect time-based actions. Fortunately, there is a way to give feedback to the
robot about how it is operating by using sensors; devices that are used to collect information about the robot
and the environment around it.

With Elapsed Time, in order to get the robot to move to a specific distance, you had to estimate the amount
of time and the percentage of duty cycle needed to get from point a to point b. However, the REV motors
come with built in encoders, which provide feedback in the form of ticks (or counts) per revolution of the

motor. The information provided by the encoders can be used to move the motor to a target position, or a
target distance.

Moving the motors to a specific position, using the encoders, removes any potential inaccuracies or
inconsistencies from using Elapsed Time. The focus of this section is to move the robot to a target position
using encoders.

@ There are two articles in that go through the basics of Encoders. Using Encoders goes through
the basics of the different types of motor modes, as well as a few application examples of using
these modes in code. In this section we will focus on using RUN_TO_POSITION.

The other article, Encoders, focuses on the general functionality of an encoder.

Itis recommended that you review both articles before moving on with this guide.

Basics of Programming with Encoders

Start by creating a basic op mode called HelloRobot_EncoderAuton.

@ When creating an op mode a decision needs to be made on whether or not to set it to
autonomous mode. For applications under 30 seconds, typically required for competitive game
play changing the op mode type to autonomous is recommended. For applications over 30
seconds, setting the code to the autonomous op mode type will limit your autonomous code to 30
seconds of run time. If you plan on exceeding the 30 seconds built into the SDK, keeping the
code as a teleoperated op mode type is recommended.

For information on how op modes work please visit the Introduction to Programming section.

For more information on how to change the op mode type check out the Test Bed - OnBot Java
section.

@ The op mode structure below is simplified and only includes the necessary components needed
to create the encoder based code.

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.TeleOp;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DcMotorSimple;

@Autonomous //sets the op mode as an autonomous op mode

public class HelloWorld_EncoderAuton extends LinearOpMode {
private DcMotor leftmotor;

private DcMotor rightmotor;

@Override

public void runOpMode() {
leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

// Wait for the game to start (driver presses PLAY)
waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()){

As with all drivetrain related navigation, the directionality of one of the motors needs to be reversed in order
for both motors to move in the same direction. Since the Class Bot V2 is still being used add the line
rightmotor.setDirection(DcMotor.Direction.REVERSE) ; tothe code beneath the
rightmotor = hardwareMap.get(DcMotor.class, "rightmotor"); code line.

public void runOpMode() {
leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

rightmotor.setDirection(DcMotor.Direction.REVERSE) ;

waitForStart();

@ For more information on the directionality of motor check out the Basics of Programming
Drivetrains section.

Recall from Using Encoders that using RUN_TO_POSITION mode requires a three step process. The first
step is setting target position. To set target position add the lines
leftmotor.setTargetPosition(1000); and rightmotor.setTargetPosition(1000);
to the op mode afterthe waitForStart(); command. To get a target position that equates to a target
distance requires so calculations, which will be covered later. For now, set target position to 1000 ticks.

waitForStart();

leftmotor.setTargetPosition(1000);
rightmotor.setTargetPosition(1000);

while (opModeIsActive()){

The next step is to set both motors to the RUN_TO_POSITION mode. Add the lines
leftmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ; and

rightmotor.setMode(DcMotor.RunMode.RUN_TO_POSITION) ; to your code, beneath the
setTargetPosition code lines.

waitForStart();

leftmotor.setTargetPosition(1000);
rightmotor.setTargetPosition(1000);

leftmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;
rightmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;

while (opModeIsActive()){

The main focus of the three step process is to set a target, tell the robot to move to that target, and at what
speed (or velocity) the robot should get to that target. Normally, the recommended next step is to calculate
velocity and set a target velocity based on ticks. However, this requires quite a bit of math to find the
appropriate velocity. For testing purposes, its more important to make sure that the main part of the code is
working before getting too deep into the creation of the code. Since the setPower function was covered in
previous sections and will communicate to the system what relative speed (or in this case duty cycle) is
needed to get to the target, this can be used in the place of setVelocity for now.

Add the lines to set the power of both motors to 80% of duty cycle.

waitForStart();

leftmotor.setTargetPosition(1000);
rightmotor.setTargetPosition(1000);

leftmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;
rightmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;

leftmotor.setPower (0.8);
rightmotor.setPower(0.8);

while (opModeIsActive()){

Now that all three RUN_TO_POSITION steps have been added to the code the code can be tested.
However, if you want to wait for the motor to reach its target position before continuing in your program, you

can use a while loop that checks if the motor is busy (not yet at its target). For this program lets edit the

@ Recall that, within a linear op mode, a while loop must always have the opModeIsActive()
Boolean as a condition. This condition ensures that the while loop will terminate when the stop
button is pressed.

Edit the while loop to include the leftmotor.isBusy() and righmotor.isBusy () functions. This
will check if the left motor and right motor are busy running to a target position. The while loop will stop when
either motor reaches the target position.

while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())) {

@ Right now the while loop is waiting for the either motor to reach the target. There may be
occasions when you want to wait for both motors to reach their target position, in this case the
following loop can be used.

while (opModeIsActive() && (leftmotor.isBusy() ||
rightmotor.isBusy()))

@ Save and run the op mode two times in a row. Does the robot move as expected the second
time?

Try turning the Control Hub off and then back on. How does the robot move?

In the Basic Encoder Concepts section, it is clarified that all encoder ports start at O ticks when the Control
Hub is turned on. Since you did not turn off the Control Hub in between runs, the second time you ran the op
mode the motors were already at, or around, the target position. When you run a code, you want to ensure
that certain variables start in a known state. For the encoder ticks, this can be achieved by setting the mode
to STOP_AND_RESET_ENCODER . Add this block to the op mode in the initialization section. Each time the
op mode is initialized, the encoder ticks will be reset to zero.

public void runOpMode() {
leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

rightmotor.setDirection(DcMotor.Direction.REVERSE) ;

leftmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;
rightmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

waitForStart();

@ For more information on the motor mode STOP_AND_RESET_ENCODERS check out the
STOP_AND_RESET_ENCODERS section of the Using Encoders guide.

Converting Encoder Ticks to a Distance

In the previous section, the basic structure needed to use RUN_TO_POSITION was created. The
placementof leftmotor.setTargetPosition(1000); and
rightmotor.setTargetPosition(1000) ; withinthe code, setthe target position to 1000 ticks.
What is the distance from the starting point of the robot and the point the robot moves to after running this
code?

Rather than attempt to measure, or estimate, the distance the robot moves, the encoder ticks can be
converted from amount of ticks per revolution of the encoder to how many encoder ticks it takes to move the
robot a unit of distance, like a millimeter or inch. Knowing the amount of ticks per a unit of measure allows
you to set a specific distance. For instance, if you work through the conversion process and find out that a
drivetrain takes 700 ticks to move an inch, this can be used to find the total number of ticks need to move the
robot 24 inches.

@ Reminder that the basis for this guide is the Class Bot V2. The REV DUO Build System is a
metric system. Since part of the conversion process references the diameter of the wheels, this
section will convert to ticks per mm.

For the conversion process the following information is needed:

¢ Ticks per revolution of the encoder

e Total gear reduction on the motor

¢ Including gearboxes and motion transmission components like gears, sprockets and chain, or belts
and pulleys

e Circumference of the driven wheels

Ticks per Revolution

The amount of ticks per revolution of the encoder shaft is dependent on the motor and encoder.
Manufacturers of motors with built-in encoders will have information on the amount of ticks per revolution.
For HD Hex Motors the encoder counts 28 ticks per revolution of the motor shatft.

(i) Visitthe manufacturers website for your motor or encoders for more information on encoder
counts. For HD Hex Motors or Core Hex Motors visit our Motor documentation.

Total Gear Reduction

Since ticks per revolution of the encoder shaft is before any gear reduction calculating the total gear
reduction is needed. This includes the gearbox and any addition reduction from motion transmission

https://docs.revrobotics.com/duo-build/ftc-starter-kit-class-bot
https://docs.revrobotics.com/duo-build/actuators/motors

components. To find the total aear reduction use the Compound Gearina formula.
For the Class Bot V2 there are two UltraPlanetary Cartridges, 4:1 and 5:1, and an additional gear reduction
from the UltraPlanetary Output to the wheels, 72T:45T ratio.

@ The UltraPlanetary Cartridges use the nominal gear ratio as a descriptor. The actual gear ratios
can be found in the UltraPlanetary Users Manual's Cartridge Details.

Using the compound gearing formula for the Class Bot V2 the total gear reduction is:

3.61 523 72
] * - * i 30.21

@ Unlike the the spur gears used to transfer motion to the wheels, the UltraPlanetary Gearbox
Cartridges are planetary gear systems. To make calculations easier the gear ratios for the
Cartridges are already reduced.

Circumference of the Wheel

The Class Bot V2 uses the 90mm Traction Wheels. 90mm is the diameter of the wheel. To get the
appropriate circumference use the following formula
circumference = diameter * 1

You can calculate this by hand, but for the purpose of this guide, this can be calculated within the code.

(1) Due to wear and manufacturing tolerances, the diameter of some wheels may be nominally
different. For the most accurate results consider measuring your wheel to confirm that the
diameter is accurate.

To summarize, for the Class Bot V2 the following information is true:

Ticks per revolution 28 ticks
Total gear reduction 30.21
Circumference of the wheel 90mm *

Each of these pieces of information will be used to find the number of encoder ticks (or counts) per mm that
the wheel moves. Rather than worry about calculating this information by hand, these values can be added

https://docs.revrobotics.com/duo-build/actuators/gears/gears-advanced#compound-gearing
https://docs.revrobotics.com/ultraplanetary/cartridge-details#actual-cartridge-gear-ratios

to the code as constant variables. To do this create three variables:
® COUNTS_PER_MOTOR_REV
e DRIVE_GEAR_REDUCTION

e WHEEL_CIRCUMFERENCE_MM

(i) The common naming convention for constant variables is known as CONSTANT_CASE, where
the variable name is in all caps and words are separated by and underscore.

Add the variables to op mode class, where the hardware variables are defined. Defining the variables within
the bounds of the class but outside of the op mode, allows them to be referenced in other methods of
functions within the class. To ensure variables are referenceable they are setas static final double
variables. Static allows references to the variables anywhere within the class and final dictates that these
variables are constant and unchanged elsewhere within the code. Since these variables are not integers
they are classified as double variables.

public class HelloWorld_EncoderAuton extends LinearOpMode {
private DcMotor leftmotor;
private DcMotor rightmotor;

static final double COUNTS_PER_MOTOR_REV = 28.0;
static final double DRIVE_GEAR_REDUCTION = 30.21;
static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * Math.PI;

Now that these three variables have been defined, they can be used to calculate two other variables: the
amount of encoder counts per rotation of the wheel and the number of counts per mm that the wheel moves.

To calculate counts per wheel revolution multiple COUNTS_PER_MOTOR_REV by
DRIVE_GEAR_REDUCTION Use the following formula:

y=axb
Where,
® g = COUNTS_PER_MOTOR_REV
®* b =DRIVE_GEAR_REDUCTION

¢ y = COUNTS_PER_WHEEL_REV

Create the COUNTS_PER_WHEEL _REV variable within the code. This will alsobe a static final
double variable.

public class HelloWorld_EncoderAuton extends LinearOpMode {
private DcMotor leftmotor;

private DcMotor rightmotor;

static final double COUNTS_PER_MOTOR_REV = 28.0;

static final double DRIVE_GEAR_REDUCTION = 30.24;
static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * 3.14;
static final double COUNTS_PER_WHEEL_REV = COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUC

Once COUNTS_PER_WHEEL_REV is calculated, use it to calculate the counts per mm that the wheel
moves. To do this divide the COUNTS_PER_WHEEL_REV by the WHEEL_CIRCUMFERENCE_MM . Use the
following formula.

(axb) _y
c Cc

X =

Where,

® g = COUNTS_PER_MOTOR_REV
® b = DRIVE_GEAR_REDUCTION

WHEEL_CIRCUMFERENCE_MM

[]
@)
1

¢ y = COUNTS_PER_WHEEL_REV

COUNTS_PER_MM

°
b
1

Create the COUNTS_PER_MM variable within the code. This will alsobe a static final double
variable.

public class HelloWorld_EncoderAuton extends LinearOpMode {
private DcMotor leftmotor;

private DcMotor rightmotor;

static final double COUNTS_PER_MOTOR_REV = 28.0;

static final double DRIVE_GEAR_REDUCTION = 30.24;

static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * 3.14;

static final double COUNTS_PER_WHEEL_REV = COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUC
static final double COUNTS_PER_MM = COUNTS_PER_WHEEL_REV / WHEEL_CIRCUMFEREI

@ COUNTS_PER_WHEEL_REV will be created as a separate variable from COUNTS_PER_MM as it
is used in calculating a target velocity.

Moving to a Target Distance

Now that you have created the constant variables needed to calculate the amount of ticks per mm moved,
you can use this to set a target distance. For instance, if you would like to have the robot move forward two

feet, converting from feet to millimeters and multiplying by the COUNTS_PER_MM will give you the amount of
counts (or ticks) needed to reach that distance.

Create two more variables called leftTarget and rightTarget . These variables can be fluctuated
and edited in your code to tell the motors what positions to go to, rather than place them with the constant
variables, create these variables within the op mode but above the waitForStart(); command.

@ The setTargetPosition(); function takes in a integer (or int) data type as its parameter,
rather than a double. Since both the leftTarget and rightTarget will be used to set the
target position, create both variables as int variables.

public void runOpMode() {
leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

rightmotor.setDirection(DcMotor.Direction.REVERSE);

leftmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;
rightmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

int leftTarget;
int rightTarget;

waitForStart();

Right now the main distance factoris COUNTS_PER_MM , however you may want to go a distance thatis in
the imperial system, such as 2 feet (or 24 inches). The target distance in this case will need to be converted
to mm. To convert from feet to millimeters use the following formula:

d(mm) = d(ft) x 304.8

If you convert 2 feet to millimeters, it comes out the be 609.6 millimeters. For the purpose of this guide, lets
go ahead an round this to be 610 millimeters. Multiply 610 millimeters by the COUNTS_PER_MM variable to
get the number of ticks needed to move the robot 2 feet. Since the intent is to have the robot move in a
straight line, setboth the leftTarget and rightTarget,tobe equalto 610* COUNTS_PER_MM

@ As previously mentioned the setTargetPosition(); function requires thatits parameter
must be an integer data type. The leftTarget and rightTarget variables have been setto
be integers, however the COUNTS_PER_MM variable is a double. Since these are two different
data types, a conversion of data types needs to be done.

In this case the COUNTS_PER_MM needs to be converted to an integer. This is as simple as
adding the line (int) in front of the double variable. However, you need to be cautious of potential
rounding errors. Since COUNTS_PER_MM is part of an equation it is recommended that you

convert to an integer after the result of the equation is found. The example of how to do this is
exhibited below.

int leftTarget = (int) (610 * COUNTS_PER_MM);
int rightTarget = (int) (610 * COUNTS_PER_MM) ;

Editthe setTargetPosition(); lines so thatboth motors are set to the appropriate target position. To
do thisadd the leftTarget and rightTarget variables to their respective motor.

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

@ Try running the code and observing the behavior of the robot. Consider some of the following
¢ |Is the robot moving forward by two feet?
e Does the robot seem to be moving in straight line?

e |Is the code running without error?

Setting Velocity

Velocity is a closed loop control within the SDK that uses the encoder counts to determine the approximate
power/speed the motors need to go in order to meet the set velocity. When working with encoder setting a
velocity is recommended over setting a power level, as it offers a higher level of control.

To set a velocity, its important to understand the maximum velocity in RPM your motor is capable of. For the
Class Bot V2 the motors are capable of a maximum RPM of 300. With a drivetrain, you are likely to get better
control by setting velocity lower than the maximum. In this case, lets set the velocity to 175 RPM

@ Recall that setVelocity is measure in ticks per second.

Create a new double variable called TPS .Add TPS the to the op mode under where rightTarget is
defined.

public void runOpMode() {
leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");

rightmotor.setDirection(DcMotor.Direction.REVERSE);

leftmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;
rightmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

int leftTarget = (int) (610 * COUNTS_PER_MM);

dptpdehplareet = (int) (610 * COUNTS_PER_MM);

waitForStart();

Since RPM is the amount of revolutions per minute a conversion needs to be made from RPM to ticks per
second. To do this divide the RPM by 60, to get the amount of rotations per second. Rotations per second
can the be multiplied by COUNTS_PER_WHEEL_REV , to get the amount of ticks per second.

TIPS = 175 * CPWR
60

double TPS = (175/60) * COUNTS_PER_WHEEL_REV

Exchange the setPower () ; functions for setVelocity(); .Add TPS asthe parameter for
setVelocity(); .

waitForStart();

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

leftmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;
rightmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;

leftmotor.setVelocity(TPS);
rightmotor.setVelocity(TPS);

while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())){

‘ @ Try to build the code. Do you get errors?
With the current state of the code you are likely to get errors similar to the ones pictured below:

org/firstinspires/ftc/teamcode/HelloWorld_EncoderAuton.java line 55, column 18: ERROR: cannot find symbol
symbol: method setVelocity(double)
location: wvariable leftmotor of type com.gualcomm.robotcore.hardware.DcMotor
org/firstinspires/ftc/teamcode/HelloWorld_EncoderAuton.java line 56, column 19: ERROR: cannot find symbol
symbol: method setVelocity(double)

location: variable rightmotor of type com.gualcomm.robotcore.hardware.DcMotor

This is because the setVelocity () ; functionis a function of the DcMotorEx Interface. The
DcMotorEx Interface is an extension of the DcMotor Interface, that provides enhanced motor

functionality, such as access to closed loop control functions. To use setVelocity(); the motor
variables need to be changed to DcMotorEx . To do this both the private variable creation of the motors,
and the hardware mapping need to be changed to DcMotorEx .

public class HelloWorld_EncoderAuton extends LinearOpMode {
private DcMotorEx leftmotor;

private DcMotorEx rightmotor;

public void runOpMode() {
leftmotor = hardwareMap.get(DcMotorEx.class, "leftmotor");

rightmotor = hardwareMap.get(DcMotorEx.class, "rightmotor");

@ Since DcMotorEx is an extension of DcMotor , DcMotor specific functions can be used by
variables defined as DcMotorEx .

Once you have made these changes the basic, drive two feet code is done! The code below is the finalized
version of the code. In this the other hardware components and telemetry have been added.

@Autonomous

public class HelloWorld_EncoderAuton extends LinearOpMode {
private DcMotorEx leftmotor;
private DcMotorEx rightmotor;
private DcMotor arm;
private Servo claw;
private DigitalChannel touch;
private Gyroscope 1imu;

static final double COUNTS_PER_MOTOR_REV = 28.0;

static final double DRIVE_GEAR_REDUCTION = 30.24;

static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * 3.14;

static final double COUNTS_PER_WHEEL_REV = COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUC
static final double COUNTS_PER_MM = COUNTS_PER_WHEEL_REV / WHEEL_CIRCUMFEREI
@Override

public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");
leftmotor = hardwareMap.get(DcMotorEx.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotorEx.class, "rightmotor");
arm = hardwareMap.get(DcMotor.class, "arm");
claw = hardwareMap.get(Servo.class, "claw");
touch = hardwareMap.get(DigitalChannel.class, "touch");

rightmotor.setDirection(DcMotor.Direction.REVERSE);

leftmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

rightmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

int leftTarget = (int) (610 * COUNTS_PER_MM);
int rightTarget = (int) (610 * COUNTS_PER_MM);
double TPS = (175/ 60) * COUNTS_PER_WHEEL_REV;

waitForStart();

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

leftmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;
rightmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;

leftmotor.setVelocity (TPS);
rightmotor.setVelocity(TPS);

while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())) {
telemetry.addData("left", leftmotor.getCurrentPosition());
telemetry.addData("right", rightmotor.getCurrentPosition());
telemetry.update();

Turning the Drivetrain Using RUN_TO_POSITION

In the Robot Navigation - OnBot Java section, the mechanism of setPower () ; was discussed.
setPower () ; dictates what direction and speed a motor moves in. On a drivetrain this dictates whether
the robot moves in forward, reverse, or turns.

In RUN_TO_POSITION mode the encoder counts (or setTargetPosition() ;)are used instead of
setPower (); to dictate directionality of the motor. If a target position value is greater than the current
position of the encoder, the motor moves forward. If the target position value is less than the current position
of the encoder, the motor moves backwards

Since speed an directionality impacts how a robot turns, setTargetPostion(); and
setVelocity () ; need to be edited to get the robot to turn. Consider the following code:

int leftTarget = (int) (610 * COUNTS_PER_MM);
int rightTarget = (int)(-610 * COUNTS_PER_MM);
double TPS = (100/ 60) * COUNTS_PER_WHEEL_REV;

waitForStart();

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

leftmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;
rightmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;

leftmotor.setVelocity(TPS);
rightmotor.setVelocity(TPS);

The rightTarget has been changed to be a negative target position. Assuming that the encoder starts
atzerodueto STOP_AND_RESET_ENCODER this causes the robot to turn to the right. Velocity remains the
same for both motors. If you try running this code, you may notice that the robot pivots along its center of
rotation. To get a wider turn changing the velocity so that the right motor is running at a lower velocity than
the left motor. Adjust the velocity and target position as needed to get the turn you need.

@ For more information on how direction and speed impact the movement of a robot please refer to
the explanation of setPower () ; inthe Robot Navigation section.

The following code walks through adding a turn to the program, after the robot moves forward for 2 feet. After
the robot reaches the 2 foot goal, there isa callto STOP_AND_RESET_ENCODERS this will reduce the
need to calculate what position to go to after a position has been reached.

@Autonomous

public class HelloWorld_EncoderAuton extends LinearOpMode {
private DcMotorEx leftmotor;
private DcMotorEx rightmotor;
private DcMotor arm;
private Servo claw;
private DigitalChannel touch;
private Gyroscope 1imu;

static final double COUNTS_PER_MOTOR_REV = 28.0;

static final double DRIVE_GEAR_REDUCTION = 30.24;

static final double WHEEL_CIRCUMFERENCE_MM = 90.0 * 3.14;

static final double COUNTS_PER_WHEEL_REV = COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUC
static final double COUNTS_PER_MM = COUNTS_PER_WHEEL_REV / WHEEL_CIRCUMFEREI
@Override

public void runOpMode() {
imu = hardwareMap.get(Gyroscope.class, "imu");
leftmotor = hardwareMap.get(DcMotorEx.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotorEx.class, "rightmotor");
arm = hardwareMap.get(DcMotor.class, "arm");
claw = hardwareMap.get(Servo.class, "claw");
touch = hardwareMap.get(DigitalChannel.class, "touch");

rightmotor.setDirection(DcMotor.Direction.REVERSE) ;

leftmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;
rightmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

// TPS variable split to change velocity for each motor when necessary

int leftTarget = (int) (610 *x COUNTS_PER_MM);
int rightTarget = (int) (610 * COUNTS_PER_MM);
double LTPS = (175/ 60) * COUNTS_PER_WHEEL_REV;
double RTPS = (175/ 60) * COUNTS_PER_WHEEL_REV;

waitForStart();

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

leftmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;
rightmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;

leftmotor.setVelocity (LTPS);
rightmotor.setVelocity (RTPS);

//wait for motor to reach position before moving on

while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())) {
telemetry.addData("left", leftmotor.getCurrentPosition());
telemetry.addData("right", rightmotor.getCurrentPosition());
telemetry.update();

}

// Reset encoders to zero

leftmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

rightmotor.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

// changing variables to match new needs

leftTarget = (int) (300 * COUNTS_PER_MM);
rightTarget = (int)(-300 * COUNTS_PER_MM);
LTPS = (100/ 60) * COUNTS_PER_WHEEL_REV;
RTPS = (70/ 60) * COUNTS_PER_WHEEL_REV;

leftmotor.setTargetPosition(leftTarget);
rightmotor.setTargetPosition(rightTarget);

leftmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;
rightmotor.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;

leftmotor.setVelocity (LTPS);
rightmotor.setVelocity (RTPS);

//wait for motor to reach position before moving on

while (opModeIsActive() && (leftmotor.isBusy() && rightmotor.isBusy())) {
telemetry.addData("left", leftmotor.getCurrentPosition());
telemetry.addData("right", rightmotor.getCurrentPosition());
telemetry.update();

Arm Control - Blocks

Introduction to Arm Control

Robot control comes in many different forms. Now that you have walked through programming a drivetrain,
we can apply those concepts to controlling other mechanisms. Since this guide utilizes the Class Bot the
focus will be on the basics of controlling it's main mechanism, a single jointed arm.

o)

Controlling an arm requires a different thought process than the one you used to control the drivetrain. While
the drivetrain uses the rotation motion of the motors to drive along a linear distance, an arm rotates along a
central point, or joint. When working with an arm you will have to head caution to the physical limitations of
the robot this includes load bearing, range of motion, and other forces that may apply.

In this section you will learn how to use the gamepad Dpad controls and the installed Touch Sensor to
control the arm. However, the focus of this section is using code to limit the range of motion of the arm.

Sections Goals of Section

Introduction to coding an arm for teleoperated

Basics of Programming an Arm i) o }
9 9 control and working with a limit switch

Using motor encoders to move an arm to a specifi

Programming an Arm to a Position »
position, such as from 45 degrees to 90 degrees.

Working with the basics of arm control, motor
Using Limits to Control Range of Motion encoder, and limit switches to control the range of

motion for an arm.

Basics of Programming an Arm

Start by creating a basic op mode called HelloRobot_ArmControl.
@ For more information on how to create an op mode type check out the Test Bed - Blocks section.

Unlike the joystick, which sends values corresponding to the position of the joystick, the Dpad on the
gamepad inputs Boolean FALSE/TRUE . In order to tell the arm to move when Dpad Up or Dpad Down

&) if
are selected,an if/else if statementneeds to be used. Selectan block. Use the settings drop
else

down to change the block to an

block. Do this by switching the m out for anw.

else if

Add the block to the op mode while loop.

else if

Add the ¥ gamepad1 * || DpadUp - /| and d gamepad1 - I DpadDown ~ I blocks to the condition

@) if
statements of the block.
do

€ i [gamepadl - | DpadUp -

cEENi - gamepadl + . DpadDown -

One of the purposes of using the Dpad is to help delineate which direction the arm needs to move in. In this
case, should . correspond with the arm moving upwards. Add a

o) if
cCl arm - B Power * ROl 1 © block to the do portion of the block below the
do

o DpadUp - | block. Change the power from 1 to 0.2.

€3 i | gamepadl - | DpadUp -
do (set Clil® - GEITIES to
-Echil - gamepad1 | DpadDown -

() if
Add another 1 block to the do portion of the block below the
do
q gamepad1 - I DpadDown I block. Change the power from 1 to -0.2.

€3 i | gamepad1 - | DpadUp -
do | set EIINS - GETTTES to

=8 gamepad1 + = DpadDown -
SO arm - 1 Power - RE

@ Save the op mode and try running the code. Consider the following questions.
* What happens if you press up on the Dpad ?

® \What happens if you press down on the Dpad ?

Right now the logic of the P statement declares that when @ gamepad1 + [DpadUp - J| is true (has

been pressed) the motor will run in the forward (or in this case upwards) direction at 20% duty cycle. If

1 gamepad1 - I DpadDown - Iis true the motor will run in reverse at 20% duty cycle. If you ran the code at

this stage you may have noticed that even when you released the Dpad the motor continued to run in the

selected direction. The current statement tells the robot when the motor should move and in what

direction, but nothing tells the motor to stop, thus the arm is continuing to run without limits.

do

B block to be a fd™ instead. To do this select the settings icon on the == block

and add an m below the @ :

(e clseif

do

To fix this edit the

else if

do set
—

Add the @arm v l Power - m: 0 the else portion of the ™ block.

€ i | gamepadi - | DpadUp -
oo arm - Power - FEr(0.2
S gamepadl - DpadDown -

else éet. Power + [

@ Try saving and running the op mode again. Pay attention to the speed of the arm going up versus
going down. Does the speed seem the same?

Working with an arm introduces different factors for consideration than what you have seen previously with
drivetrains. For instance, did you notice a difference in speeds when moving the arm up or down? Unlike the
drivetrain, where the effect of gravity impacts the motors consistently across either direction, gravity plays a
significant role in the speed of the arm motor.

Adding a Limit Switch

Another consideration to make is the physical limitations of your arm mechanism. Certain mechanisms may
have a physical limitation, that when exceeded runs the risk of damaging the mechanism or another
component of the robot. There are a few ways to limit the mechanism with sensors that will help reduce the
potential of a mechanism exceeding its physical limitations. In this section we will focus on using a limit
switch to limit the motion range of the arm.

(1) This section assumes that you have a basic knowledge of limit switches form the Test Bed
section and the Digital Sensors article.

As you may recall from the Test Bed section limit switches use Boolean logic to dictate when a limit has
been met. Limit switches typically come in the form of digital sensors, like the Touch Sensor, as digital
sensors report a Boolean on/off to the system, much like a light switch.

If you are using a Class Bot your robot should have a Touch Sensor mounted to the front of your robot
chassis. You also have a Limit Switch Bumper installed. Together these items create a limit switch system.
By utilizing the limit switch system you can keep your Class Bot arm from exceeding the lower physical limit,
or what will be known as our starting position. Lets go ahead and start coding!

@ Before proceeding with code please make sure that your mechanism is interfacing with, and
pressing the Touch Sensor. If you have the Class Bot this entails making sure your bumper is
actively pressing the Touch Sensor when the arm comes down.

@D serepaci — WOpadUp -
do delm-.lo 0.2
ey - statement made in the previous section, and dragging it to the side of

eise (5ot (D . IR o W)

Start by grabbing the

the blocks project.

https://docs.revrobotics.com/15mm/ftc-starter-kit-class-bot/skv3-arm-assemblies#limit-switch-bumper-assembly

OnBotJava Manage

Op Mode Name: HelloRobot_ArmControl Group: _ « Enabled
— LinearOpMode
i Gamepad

P Actuators call !

P Sensors [it (! cal .
» Other Devices do

» Android oo while + I HelloRobot ArmControl B
» Utilities do

Logic — =

Loops
Math
Text
Lists
Variables

@) if gamepadi - | Dpadlp -
do (‘set ELE - GEIERS to

—
3 I Gamepad1 - M DpadDown - |

do (SR GECED o
—

eise ((setIETRN - (LUCHRS to
—

Functions
Miscellaneous

@) if
do

Add a new block to the while loop. Add the . block to the conditional portion of

the B& block.

else

Put ntahzaton blocks here
Y HetoRotmt Armi orros I wart o Srar
_] HetoRobot ArmControl il opModelsActve
Sl P\t run blocks here
et LN _J HedoRobot ArmControl i op
P\t loop blocks here
() if touch -+ | State -

do set to
ot CID

Add the block.

L -
PN fun Biocks heve

we LB " L

i PV oop SRocks heve
@8 fouch - | State - |
do | (2] i gamepad1 - | DpadUp -

If you recall from the initial Limit switch section, the touch sensor operates on a FALSE/TRUE binary. When
the touch sensors is not pressed the . block reports true; when the touch sensor is
pressed the . block reports false. At this point the logic of the code states that when

touch sensor is not pressed, the gamepad commands that were previously chosen operate normally. To
function as a limit switch the motor needs to stop when the touch sensor is pressed.

() Try adding a 0. block to the else portion of the block.

@)1 [touch - | State - |
do 31 i [gamepadi v || DpadUp -

~ Power v (o)

| gamepad1 * | DpadDown ~

~ Power v (o)

—
CICCIN arm v IPower v m 0
—
|
else | set Elfi lPower v n 0
—

Save the op mode and run it.

What happens when the Touch Sensor is pressed?

One of the common features of a limit switch, like the Touch Sensor, is the ability to reset to its default state.
If you press the Touch Sensor with your finger, you may notice that as soon as you release the pressure you
are applying the Touch Sensor will return to its default "not pressed” state. However, you have to release the
pressure in order to accomplish this.

@ Make sure that the mechanism is actually interfacing with the Touch Sensor. For the Class Bot,
you may need to adjust the Touch Sensor so that the Limit Switch Bumper is interfacing with it
more consistently.

The code in the info block above dictates that when the Touch Sensor is pressed the arm motor is set to
zero. This would work in a mechanism where the Touch Sensor is allowed to return to its default state on its
own. However, once the arm presses the Touch Sensor, the weight of the mechanism will keep the Touch
Sensor from returning to its default state. The combination of the weight of the mechanism and the logic of
the info block code means that once the arm meets its limit it will not be able to move again.

To remedy this, an action to move the arm in the opposite direction of of the limit needs to be added to the

) if
else statement. To do this lets use another block. Since the Touch Sensor is a lower limit for the arm,
else

the arm will need to move up (or the motor in the forward direction) to move away from the touch sensor.
Following the earlier convention for moving the arm, add the # gamepad1 ~ [DpadUp -+ | as the condition

@) if

« . In the do portion of the block add the §§&38am « B Power * RO 1 | block. Change the duty

else

in the

cycle from 100% to 20%. In the else portion add the @arm i lPower v m: 0 ' block.

€3 i | gamepad1 - | DpadUp -
St arm - B Power - RGP 0.2

else Lset. Power + | ¢

Add this block set to the else portion of the block set.

- L
P\t run Dhocks heve
e 0 w0
B P\t oop Dlocks heve
BE N ouch - | State - |
@RI gamepadi - i DpadUp - |
do detﬁm.mto
S gamepadi - W DpadDown - |

do | set D . (ZTIES (o

else [(3] if gamepad! - | DpadUp -

N am - Power - [

Programming an Arm to a Position

In the Encoder Navigation section the concept of moving the motor to a specific position based on encoder

ticks was introduced. The process highlighted in Encoder Navigation focused on how to convert from
encoder ticks to rotations to a linear distance. A similar procedure can be utilized to move the arm to a
particular position. However, unlike the drivetrain, the arm does not follow a linear path. Rather than convert
to a linear distance it makes more sense to convert the encoder ticks into an anale measured in dearees.

In the image below two potential positions are showcased for the ClassBot arm. One of the positions -
highlighted in blue below - is the position where the arm meets the limit of the touch sensor. Due to the limit,
this position will be our default or starting position. From the Class Bot build guide, itis known that the
Extrusion supporting the battery sits a 45 degree angle. Since the arm is roughly parallel to these extrusion
when itis in the starting position, we can estimate that the default angle of the arm is roughly 45 degrees.

The goal of this section is to determine the amount of encoder ticks it will take to move the arm from its
starting position to a position around 90 degrees. There are a few different ways this can be accomplished.
An estimation can be done by moving the arm to the desired position and recording the telemetry feedback
from the Driver Station. Another option is to do to the math calculations to find the amount of encoder ticks
occur per degree moved. Follow through this section to walk through both options and determine which is
the best for your team.

Estimating the Position of the Arm

To estimate the position of the arm using telemetry and testing, lets start with the initial code we created at
the start of the Basics of Programming an Arm, section.

%) () fo
| call :
1@ 1 [HelloRobot_AmmControl J opModelsActive

| Put run blocks here.

(=o--10 while = I8 =N HelloRobot ArmControl 1| opModelsActive
s[s1 8 Put loop blocks here.
() if - DpadUp -

SEENE | gamepad1 | DpadDown
do | set CIUIS . (IS to MLk

@ For now you can move the limit switch related blocks to the side of your project.

||l Telemetry i& addData

Within the loop add a key key block. Add the o am - ICurrentl-Dosition - I to the number

number 123

|/l Telemetry | addData

portion of the key key block. Change the key string from the default "key" to "Arm
number 123

Test."

N run Blocks here
wert T . |
L PV op ocks heee
gevepad! B Dpadly
w0 L

Save the op mode and run it. Use the gamepad commands to move the arm to the 90 degree position. Once
you have the arm properly positioned read the telemetry off the Driver Station to determine the encoder
count relative to the position of the arm.

AR, R—

@ Recall from the Basic Encoder Concepts section that the encoder position is set to 0 each time
the Control Hub is turned on. This means that if your arm is in a position other than the starting
position when the Control Hub is turned on, that position becomes zero instead of the starting
position.

The number given in the image above is not necessarily an accurate encoder count for the 90
degree position. To get the most accurate encoder reading for your robot make sure that your
starting position reads as 0 encoder counts. To further increase accuracy consider doing several
testing runs before deciding on the number of counts.

To add the RUN_TO_POSITION codethe if/else statement mustfirst be edited back into an

block, as shown in the code below.

Y ~rOphiode

oot COLETIEET) O
’] MetoRotot ArmCortrol [l opModeisActve
g P run bhocks heve
oot GRS o (CITRN) Gt
I P\t loog blocks heve

@10} gamepadi W DpadUp -

CEENE | gamepad1 Dpadf)own v

] Tetmetry J s0d0%s

Arm Toat

Now recall that in order to execute RUN_TO_POSITION the following three blocks need to be added to

both sections of the ¥ block.

--0 arm v | TargetPosition * | (o
RunMode RUN_TO_POSITION
0

When DpadUp is pressed, the arm should move to the the 90 degree position. When DpadDown is
pressed the arm should move back to the starting position. To do this set the first [Ziam - i TargetPosition - §¢

equal to the number of ticks it took your arm to get to 90 degrees, for this example we will use 83 ticks.

Since we want DpadDown to return the arm to the starting position, keeping the

@arm W TargetPosiion - JIL 0 block set to 0 will allow us to accomplish this. Set both
cd arm - B Power « RGO | blocks equal to 0.5.

Bs o e e
e 0
R : 1 A
BN gamepadi - W DpadUp - |
CNE T arm - | TargetPosition - |19
set ~ Mode - i RunMode RUN TO POSITION
\iEt ‘arm -+ | Power * W& 0.5
X gamepad1 - M DpadDown - |
SN arm - | TargetPosition + |9
Tam - | Mode - 120 RunMode RUN_TO POSITION
cet.to 05

@ Recall that the target position dictates which direction the motor moves, taking over the

directionality control from the @arm v l Power - ﬂ: 0 block, so both blocks can be setto a

positive value since they will control the speed.

If you try running this code you may notice that the arm oscillates around the 90 degree position. When this
behavior is present you should also notice the telemetry output for the encoder counts fluctuating.
RUN_TO_POSITION is a Closed Loop Control, which means that if the arm does not perfectly reach the
target position, the motor will continue to fluctuate until it does. When motors continue to oscillate and never
quite reach the target position this may be a sign that the factors determining tolerances and other aspects of
the closed loop are not tuned to this particular motor or mechanism. There are ways to tune the motor, but for
now we want to focus on working with the arm and expanding on how limits and positions work with regards
to the mechanism.

Calculating Target Position

In the initial introduction to run to position, you worked through the calculations needed to convert the ticks
per rotation of a motor into ticks per mm moved. Now we want to focus on how to convert ticks per rotation of
the motor to ticks per degree moved. From the previous section you should have a rough estimate of the
amount of ticks you need to get to the 90 degree position. The goal of this section is to work through how to
get a more exact position.

To start you will need some of the same variables we used in Encoder Navigation:

Ticks per Revolution

Recall, that ticks per revolution of the encoder shatft is different than the ticks per revolution of the shaft that is
controlling a mechanism. We saw this in the Encoder Navigation section when the ticks per revolution at the
motor was different from the ticks per revolution of the wheel. As motion is transmitted from a motor to a
mechanism, the resolution of the encoder ticks changes.

(1) For more information on the effect of motion transmission across a mechanism check out the
Compound Gearing section.

The amount of ticks per revolution of the encoder shaft is dependent on the motor and encoder.
Manufacturers of motors with built-in encoders will have information on the amount of ticks per revolution.

(1) Visit the manufacturers website for your motor or encoders for more information on encoder
counts. For HD Hex Motors or Core Hex Motors visit the Motor documentation.

In the Core Hex Motor specifications there are two different Encoder Counts per Revolution numbers:

e At the motor - 4 counts/revolution

e Atthe output - 288 counts/revolution

At the motor is the number of encoder counts on the shaft that encoder is on. This number is equivalent to
the 28 counts per revolution we used for the HD Hex Motor. The 288 counts "at the output" accounts for the
change in resolution after the motion is transmitted from the motor to the builtin 72:1 gearbox. Lets use the
288 as ticks per revolution so that we do not have to account for the gearbox in our total gear reduction
variable.

https://docs.revrobotics.com/duo-build/actuators/gears/gears-advanced#compound-gearing
https://docs.revrobotics.com/duo-build/actuators/motors
https://docs.revrobotics.com/duo-build/actuators/motors/core-hex-motor#product-specs

Total Gear Reduction

Since we built the the gear reduction from the motor gearbox into the ticks per revolution the main focus of
this section is calculating the gear reduction of the arm joint. The motor shaft drives a 45 tooth gear that
transmits motion to a 125 tooth gear. The total gear ratio is 125T:45T. To calculate the gear reduction for this
gear train, we can simply divide 125 by 45.

g =2.777778
45

To summarize, for the Class Bot V2 the following information is true:

Ticks per revolution 288 ticks
Total gear reduction 2777778
Now that we have this information lets create two constant variables:

e COUNTS_PER_MOTOR_REV

e GEAR_REDUCTION

(1) The common naming convention for constant variables is known as CONSTANT_CASE, where
the variable name is in all caps and words are separated by and underscore.

Add the variables COUNTS_PER_MOTOR_REV and GEAR_REDUCTION variables to the initialization
section of the op mode.

) A
~=1l COUNTS PER MOTOR _REV - R

==l GEAR_REDUCTION - R

Once the variables are created and added to the op mode, use the E blocks to set the variables to the

respective values

5 COUNTS PER MOTOR REV - | (i 288
), GEAR_REDUCTION - [(b1 2.777778

Now that these two variables have been defined, we can use them to calculate two other variables: the
amount of encoder counts per rotation of the 125T driven gear and the number of counts per degree moved.

Calculating counts per revolution of the 125T gear (or COUNTS_PER_GEAR_REV)is the same formula used
in Encoder Navigation for our COUNTS_PER_WHEEL _REV variable. So to get this variable we can
multiple COUNTS_PER_MOTOR_REV by GEAR_REDUCTION .

L8 COUNTS_PER_GEAR _REV - R COUNTS PER_MOTOR REV - Ul * * | GEAR REDUCTION - ||

To calculate the number of counts per degree or moved or COUNTS_PER_DEGREE divide the
COUNTS_PER_GEAR_REV variable by 360.

Add both these variables to the op mode in the initialization section of the op mode.

- .
-] COUNTS_PER_MOTOR_REV - R 288

%0 GEAR_REDUCTION - R0l 2777778
=2 COUNTS PER_GEAR REV - R COUNTS_PER_MOTOR_REV - GEAR_REDUCTION -

-1 COUNTS_PER DEGREE - | COUNTS_PER_GEAR REV - M=~ 1 360

r-
.
4
-
.
-
-
.

Finally we need to create a non-constant variable that will act as our position. Create a variable called arm
position.

To get to the 90 degree position, the arm needs to move roughly 45 degrees. Set arm position equal to
COUNTS_PER_DEGREE times 45.

sl armpostion © ENENET COUNTS_PER_DEGREE - JIx - [45

Add this variable to the § gamepad1 * 8 DpadUp - J| section of the

the 90 degree position. Add the block to the @arm W TargetPosition - Jl 0 block.

statement, as this section dictates

S8 armPostion - KU COUNTS PER DEGREE - [~ - [45 |

-t arm - | TargetPosition - [0 81 armPastion -
.-
.

@ We could set @arm W TargetPosition - Jl 0 equal to . However, itis

a good practice to create a variable in situations like this. If we want to add another position later,
we can easily edit the variable to fit our needs.

Using Limits to Control Range of Motion

In the previous sections you worked on some of the building blocks for restricting an arms range of motion.
From those sections you should have the foundation you need to perform basic arm control. However, there

AvA ~Aanrman AtlhAar AvAaAt A LAV~ VAL AR tiaA AnnAanAdAr mARiHANnA AnA Lnaiba A AvnAanA HhAa AAantrAl viAn lhAaviA AviAr

This section will cover two additional types of control. The first type of control we will explore is the idea of
soft limits. In the Adding a Limit Switch section we discuss the concept of physical limits of a mechanism
however, there may be times you need to limit the range of motion of an arm without installing a physical
limit. To do this a position based code can be used to create a range for the arm.

Once you have a basic idea of how to create soft limits, we will explore how to use a limit switch (like a
touch sensor) to reset the range of motion. This type of control reduces the risk of getting stuck outside of
your intended range of motion, which can affect the expected behavior of your robot.

To set the soft limits we will use some of the basic logic we established in previous sections, with some
edited changes. Start with a Basic Op Mode and add the constant variables from the Calculating Target
Position section to the op mode.

) : i A

=1 COUNTS_PER _MOTOR_REV - Lol 283

<0 GEAR REDUCTION - Lol 2777778

5 COUNTS_PER_GEAR _REV ~ Ri) COUNTS PER MOTOR REV + Ml * * |'1 GEAR _REDUCTION -

Next we need to create our upper and lower limits. Create two new variables one called minPosition
and one called maxPosition.Add both of these to the initialization section of the op mode.

set to
set to

For now we wantthe minPosition setas our starting position and the maxPosition setto our 90
degree position. Set minPos-ition equal to E and set maxPos1ition equal to

COUNTS_PER DEGREE - JIlx - [45 [.

maimDAaAitiAKk -

rnuarirusIuvll v

- maxbosition © RSHENI COUNTS_PER DEGREE - Il - [45

An if/else 1if statementneeds to be added to control the arm, for this we can use the same basic logic
we use in the Basics of Programming an Arm section.

(3 [| gamepadl - | DpadUp -
do | set CTIIS . GENTIEA to

==l gamepad1 * | DpadDown -
do | set CTINS . GETCES to

else :et. Power * [0

To set the limit we need to editour if/else 1f statementso thatthe limits are builtin. If DpadUp is
selected and the position of the arm is less than the maxPosition thenthe arm will move to the

maxPosition.If DpadDown is selected and the position of the is greater thatthe minPosition then
the arm will move towards the minPosition.

_gamepad1 - [DpadUp - fland = JE8E" "0 G eniPosition -
do | set BN - CIITIES o K
—

else if

_gamepad1 - | DpadDown - fland = JERE", "8 C, rentPosition -
do | set EINID . (EITIED to WEE

eise | sot ELEA - (EIIED o WY

@ The current code configuration will stop the motor at any point that the conditions to power the
motor are not met. Depending to factors like the weight of the mechanism and any load that it is
bearing, when the motor stops the arm may drop below the maxPosition . Take time to test
out the code and confirm that it behaves in the way you expect it to.

Overriding Limits

One of the benefits of having a soft limit is being able to exceed that limit. Since encoders zero tick position
is determined by the position of the arm when the Control Hub powers on; if attention is not payed to what
position the arm is on power up the range of motion of the arm is affected. For instance, if we have to reset
the Control Hub while the arm is in the 90 degree position, the 90 degree position is equal to 0 encoder
ticks. One way around this is to create an override for the range of motion.

There are a few different ways an override of sorts can be created, in our case we are going to use the a
button and touch sensor to help reset our range.

Start by editing the J#* to add another @ condition. Use the #fgamepadi - A] block as the

condition. Add a {E&8arm - B Power ~ RGM 0~ block to the do portion of the

else It

_gamepad1 - | DpadDown - Jland * 88 o CurrentPosition + || > * Il minPosition -

do ((se TR - G 0
N amepadi - WA -
do (st ETHRD . GEITED to

Now that we have this change in place, when the a button is pressed the arm will move toward the starting
position. When the arm reaches and presses the touch sensor we wantto STOP_AND_RESET_ENCODER .

(&)
We can create an E statement that focuses on performing this stop and reset when the touch sensor is

pressed. Since the touch sensor reports true when its not pressed and false whenitis, we will need to

use the oL block.

‘ (D The not operator offffi can be used in conditional binary statements when you need inverse

whether something is true of false .Forinstance, an if statementactivates when

something is true, but when the Touch Sensor reports true itis not pressed. In our case we
want this if statement to activate when the touch sensor is pressed thus we need to use the not

operator.

G F e touch - T State -

do éet'.mto RunMode ~ STOP_AND RESET ENCODER

So, if the touch sensor returns false (oris pressed) the motor run mode
STOP_AND_RESET_ENCODER will be activated causing the motor encoder to reset to 0 ticks.

o) if
do (‘sel ETLEN - (5N to STOP_AND_RESET_ENCODER

Now that this code is done, try testing it!

Arm Control - OnBot Java

Introduction to Arm Control

Robot control comes in many different forms. Now that you have walked through programming a drivetrain,
we can apply those concepts to controlling other mechanisms. Since this guide utilizes the Class Bot the
focus will be on the basics of controlling it's main mechanism, a single jointed arm.

Controlling an arm requires a different thought process than the one you used to control the drivetrain. While
the drivetrain uses the rotation motion of the motors to drive along a linear distance, an arm rotates along a
central point, or joint. When working with an arm you will have to head caution to the physical limitations of
the robot this includes load bearing, range of motion, and other forces that may apply.

In this section you will learn how to use the gamepad Dpad controls and the installed Touch Sensor to
control the arm. However, the focus of this section is using code to limit the range of motion of the arm.

Sections Goals of Section

Introduction to coding an arm for teleoperated

Basics of Programming an Arm i) .)
control and working with a limit switch

Using motor encoders to move an arm to a specifi

Programming an Arm to a Position .
position, such as from 45 degrees to 90 degrees.

Working with the basics of arm control, motor
Using Limits to Control Range of Motion encoder, and limit switches to control the range of
motion for an arm.

Basics of Programming an Arm

Start by creating a basic op mode called HelloRobot_ArmControl.
(1) For more information on how to create an op mode check out the Test Bed - Onbot Java section.

Unlike the joystick, which sends values corresponding to the position of the joystick, the Dpad on the
gamepad inputs Boolean FALSE/TRUE . In order to dictate how the arm moves when you press DpadUp

or DpadDown ;an-if/else if statementneedsto be used.Create an if/else 1if statementlike the

AnrnA khalAaas

while (opModeIsActive()) {
if(gamepadl.dpad_up){

}
else if (gamepadl.dpad_down){

Now that the basic structure is in place, we can add the necessary blocks to dictate the direction of the arm.
The best practice is to have the arm move up when DpadUp is selected and down with DpadDown is
selected. To do this lets add arm. SetPower () ; to each of the actionable parts ofthe if/else

i f statement.

@ Recall that the value assigned to setPower dictates the direction and speed of the motor.
Between the motor and the gearing on the class bot the positive value will move the arm the arm
upwards and a negative value will move the arm downwards.

If you are unsure which direction your motor will move create the following code and test to
ensure that your motor is behaving as expected.

if(gamepadl.dpad_up){
arm.setPower (0.2);

}
else if (gamepadl.dpad_down) {
arm.setPower (-0.2);

}

@ Starting with a lower duty cycle percentage such as the 0.2 exhibited in the code above, will
allow for easier testing when making decisions for the arm. We will change to a higher duty cycle
later on in this guide.

@ Save the op mode and try running the code. Consider the following questions.
e What happens if you press up on the Dpad ?

¢ What happens if you press down on the Dpad ?

Right now the logic of the if/else 1f statementdeclaresthatwhen gamepadl.dpad_up istrue (has
been pressed) the motor will run in the forward (or in this case upwards) direction at 20% duty cycle. If
gamepadl.dpad_down is true the motor will run in reverse at 20% duty cycle. If you ran the code at this
stage you may have noticed that even when you released the Dpad the motor continued to run in the

selected direction. The current if/else 1if statement tells the robot when the motor should move and in

To fix this editthe if/else if statementto include and action to perform if neither gamepad conditions
are true. Since we want the arm to stop moving if neither gamepad conditions are met lets use
arm.setPower (0) ; to stop the motor .

if(gamepadl.dpad_up){
arm.setPower (0.2);

}
else if (gamepadl.dpad_down) {
arm.setPower (-0.2);

}
else {

arm.setPower (0) ;

}

@ Try saving and running the op mode again. Pay attention to the speed of the arm going up versus
going down. Does the speed seem the same?

Working with an arm introduces different factors for consideration than what you have seen previously with
drivetrains. For instance, did you notice a difference in speeds when moving the arm up or down? Unlike the
drivetrain, where the effect of gravity impacts the motors consistently across either direction, gravity plays a
significant role in the speed of the arm motor.

Adding a Limit Switch

Another consideration to make is the physical limitations of your arm mechanism. Certain mechanisms may
have a physical limitation, that when exceeded runs the risk of damaging the mechanism or another
component of the robot. There are a few ways to limit the mechanism with sensors that will help reduce the
potential of a mechanism exceeding its physical limitations. In this section we will focus on using a limit
switch to limit the motion range of the arm.

@ This section assumes that you have a basic knowledge of limit switches form the Test Bed
section and the Digital Sensors article.

As you may recall from the Test Bed section limit switches use Boolean logic to dictate when a limit has
been met. Limit switches typically come in the form of digital sensors, like the Touch Sensor, as digital
sensors report a Boolean on/off to the system, much like a light switch.

If you are using a Class Bot your robot should have a Touch Sensor mounted to the front of your robot
chassis. You also have a Limit Switch Bumper installed. Together these items create a limit switch system.
By utilizing the limit switch system you can keep your Class Bot arm from exceeding the lower physical limit,
or what will be known as our starting position. Lets go ahead and start coding!

‘ @ Before proceeding with code please make sure that your mechanism is interfacing with, and

https://docs.revrobotics.com/15mm/ftc-starter-kit-class-bot/skv3-arm-assemblies#limit-switch-bumper-assembly

pressing the Touch Sensor. If you have the Class Bot this entails making sure your bumper is
actively pressing the Touch Sensor when the arm comes down.

In the Test Bed - Onbot Java section, you learned how to create a basic limit switch program, similar to the
one below.

Limit Switch if/else

if (touch.getState()){
//Touch Sensor +is not pressed
arm.setPower (0.2);

} else {
//Touch Sensor 1is pressed

arm.setPower (0) ;

If you recall from the initial Limit Switch section, the Touch Sensor operates on a FALSE/TRUE binary.
When the touch sensors is not pressed touch.getState() reports true ; when the touch sensoris
pressed touch.getState() reports false . The logic of the code states that when touch sensor is not
pressed, the motor runs at 20% duty cycle.

Rather than have the motor run at 20% of duty cycle when the Touch Sensor isn't pressed and stop when the
sensor is pressed, we want to control the arm using the gamepad still. To do this we can nestthe Gamepad
if/else 1if statementwithinthe Limit Switch if/else statement.

@ For this next portion we will be utilizing the if/else 1if statementcreate in the Basics of
Programming and Arm. From here on out this basic code logic will be refereed to as the
Gamepad if/else 1f.The limitswitch code will be know asthe Limit Switch
if/else . Both pieces of code will be referenced again.

Gamepad if/else if

if(gamepadl.dpad_up){
arm.setPower(0.2);
}
else if (gamepadl.dpad_down){

arm.setPower (-0.2);

else {
arm.setPower (0);

}

if(touch.getState()){
if(gamepadl.dpad_up) {
arm.setPower (0.2);

}
else if (gamepadl.dpad_down){

arm.sgtPower(—O.z);

else {
arm.setPower (0) ;
}
}
else {
arm.setPower (0);

}

() Save the op mode and run it.

What happens when the Touch Sensor is pressed?

One of the common features of a limit switch, like the touch sensor, is the ability to reset to its default state. If
you press the Touch Sensor with your finger, you may notice that as soon as you release the pressure you
are applying the Touch Sensor will return to its default "not pressed" state. However, you have to release the
pressure in order to accomplish this.

@ Make sure that the mechanism is actually interfacing with the Touch Sensor. For the Class Bot,
you may need to adjust the Touch Sensor so that the Limit Switch Bumper is interfacing with it
more consistently.

The code in the info block above dictates that when the Touch Sensor is pressed the arm motor is set to
zero. This would work in a mechanism where the Touch Sensor is allowed to return to its default state on its
own. However, once the arm presses the Touch Sensor, the weight of the mechanism will keep the Touch
Sensor from returning to its default state. The combination of the weight of the mechanism and the logic of
the info block code means that once the arm meets its limit it will not be able to move again.

To remedy this, an action to move the arm in the opposite direction of of the limit needs to be added to the
else statement. Since the Touch Sensor is a lower limit for the arm, the arm will need to move up (or the
motor in the forward direction) to move away from the touch sensor. To do this we can create an if/else
statement similar to our gamepad Gamepad 1if/else 1if statement. Instead of having the normal
gamepad operations, when the Touch Sensor and DpadUp are pressed the arm moves away from the
Touch Sensor. Once the Touch Sensor no longer reports false the normal gamepad operations return and
the arm can move in either direction again.

if(touch.getState()){
if (gamepadl.dpad_up){
arm.setPower (0.2);
}
else if (gamepadl.dpad_down){
arm.setPower (-0.2);
}
else {
arm.setPower (0) ;

} }
else {
if(gamepadl.dpad_up) {
arm.setPower (0.2);

}
else{
arm.setPower (0) ;

Programming an Arm to a Position

In the Encoder Navigation section the concept of moving the motor to a specific position based on encoder
ticks was introduced. The process highlighted in Encoder Navigation focused on how to convert from
encoder ticks to rotations to a linear distance. A similar procedure can be utilized to move the arm to a
particular position. However, unlike the drivetrain, the arm does not follow a linear path. Rather than convert
to a linear distance it makes more sense to convert the encoder ticks into an angle measured in degrees.

In the image below two potential positions are showcased for the ClassBot arm. One of the positions -
highlighted in blue below - is the position where the arm meets the limit of the touch sensor. Due to the limit,
this position will be our default or starting position. From the Class Bot build guide, itis known that the
Extrusion supporting the battery sits a 45 degree angle. Since the arm is roughly parallel to these extrusion
when itis in the starting position, we can estimate that the default angle of the arm is roughly 45 degrees.

([

J
\,";!

The goal of this section is to determine the amount of encoder ticks it will take to move the arm from its

starting position to a position around 90 degrees. There are a few different ways this can be accomplished.
An estimation can be done by moving the arm to the desired position and recording the telemetry feedback
from the Driver Station. Another option is to do to the math calculations to find the amount of encoder ticks
occur per degree moved. Follow through this section to walk through both options and determine which is

T Y S P

Estimating the Position of the Arm

To estimate the position of the arm using telemetry and testing, lets start with the Gamepad if/else
if code.

Gamepad if/else if

if(gamepadl.dpad_up) {
arm.setPower (0.2);

}
else 1if (gamepadl.dpad_down) {
arm.setPower (-0.2);

}
else {

arm.setPower (0) ;

}

‘ (D) For now you can comment out the limit switch related code.

Within the while loop add the lines telemetry.addData("Arm Test",
arm.getCurrentPosition()); and telemetry.update();

while (opModeIsActive){
if(gamepadl.dpad_up) {
arm.setPower (0.2);

}
else if (gamepadl.dpad_down) {
arm.setPower (-0.2);

}
else {

arm.setPower (0) ;

}
telemetry.addData("Arm Test'", arm.getCurrentPosition());
telemetry.update();

Save the op mode and run it. Use the gamepad commands to move the arm to the 90 degree position. Once
you have the arm properly positioned read the telemetry off the Driver Station to determine the encoder
count relative to the position of the arm.

A . =

N
Arm Test : 83.0

@ Recall from the Basic Encoder Concepts section that the encoder position is setto 0 each time
the Control Hub is turned on. This means that if your arm is in a position other than the starting
position when the Control Hub is turned on, that position becomes zero instead of the starting
position.

The number given in the image above is not necessarily an accurate encoder count for the 90
degree position. To get the most accurate encoder reading for your robot make sure that your
starting position reads as 0 encoder counts. To further increase accuracy consider doing several
testing runs before deciding on the number of counts.

Recall that in order to execute RUN_TO_POSITION the following three lines of cod need to be added to
both sections of the Gamepad if/else if block.

arm.setTargetPosition(0);
arm.setMode (DcMotor.RunMode .RUN_TO_POSITION) ;

arm.setPower (0) ;

When DpadUp is pressed, the arm should move to the the 90 degree position. When DpadDown is
pressed the arm should move back to the starting position. To do this set the
firstarm.setTargetPosition(0); equal tothe number of ticks it took your arm to get to 90 degrees,
for this example we will use 83 ticks.

Since we want DpadDown to return the arm to the starting position, keeping the
arm.setTargetPosition(0); setto 0 will allow us to accomplish this. Set both
arm.setPower (0); equalto0.5.

Target Position if/else if

if(gamepadl.dpad_up) {

arm, setiadg¢bEmMst6ORIBRAdHe . RUN_TO_POSITION) ;
arm.setPower (0.5);

}
else 1if (gamepadl.dpad_down) {
arm.setTargetPosition(0);
arm.setMode (DcMotor .RunMode.RUN_TO_POSITION) ;
arm.setPower (0.5);

}

@ Note: the code above was given a file name Target Position if/else if this code will
be referenced again.

@ Recall that the target position dictates which direction the motor moves, taking over the
directionality control from arm.setPower () ; so both blocks can be setto a positive value
since they will control the speed.

If you try running this code you may notice that the arm oscillates in the 90 degree position. When this
behavior is present you should also notice the telemetry output for the encoder counts fluctuating.
RUN_TO_POSITION isa Closed Loop Control, which means that if the arm does not perfectly reach the
target position, the motor will continue to fluctuate until it does. When motors continue to oscillate and never
quite reach the target position this may be a sign that the factors determining tolerances and other aspects of
the closed loop are not tuned to this particular motor or mechanism. There are ways to tune the motor, but for
now we want to focus on working with the arm and expanding on how limits and positions work with regards
to the mechanism.

Calculating Target Position

In the initial introduction to run to position, you worked through the calculations needed to convert the ticks
per rotation of a motor into ticks per mm moved. Now we want to focus on how to convert ticks per rotation of
the motor to ticks per degree moved. From the previous section you should have a rough estimate of the
amount of ticks you need to get to the 90 degree position. The goal of this section is to work through how to
get a more exact position.

To start you will need some of the same variables we used in Encoder Navigation:

Ticks per Revolution

Recall, that ticks per revolution of the encoder shatt is different than the ticks per revolution of the shaft that is
controlling a mechanism. We saw this in the Encoder Navigation section when the ticks per revolution at the
motor was different from the ticks per revolution of the wheel. As motion is transmitted from a motor to a
mechanism, the resolution of the encoder ticks changes.

(1) For more information on the effect of motion transmission across a mechanism check out the
Compound Gearing section.

https://docs.revrobotics.com/duo-build/actuators/gears/gears-advanced#compound-gearing

The amount of ticks per revolution of the encoder shaft is dependent on the motor and encoder.
Manufacturers of motors with built-in encoders will have information on the amount of ticks per revolution.

(1) Visit the manufacturers website for your motor or encoders for more information on encoder
counts. For HD Hex Motors or Core Hex Motors visit the Motor documentation.

In the Core Hex Motor specifications there are two different Encoder Counts per Revolution numbers:

e At the motor - 4 counts/revolution

e Atthe output - 288 counts/revolution

At the motor is the number of encoder counts on the shaft that encoder is on. This number is equivalent to
the 28 counts per revolution we used for the HD Hex Motor. The 288 counts "at the output" accounts for the
change in resolution after the motion is transmitted from the motor to the builtin 72:1 gearbox. Lets use the
288 as ticks per revolution so that we do not have to account for the gearbox in our total gear reduction
variable.

Total Gear Reduction

Since we built the the gear reduction from the motor gearbox into the ticks per revolution the main focus of
this section is calculating the gear reduction of the arm joint. The motor shaft drives a 45 tooth gear that
transmits motion to a 125 tooth gear. The total gear ratio is 125T:45T. To calculate the gear reduction for this
gear train, we can simply divide 125 by 45.

12—5 =2.777778
45

To summarize, for the Class Bot V2 the following information is true:

Ticks per revolution 288 ticks
Total gear reduction 2777778
Now that we have this information lets create two constant variables:

e COUNTS_PER_MOTOR_REV

® GEAR_REDUCTION

@ The common naming convention for constant variables is known as CONSTANT_CASE, where
the variable name is in all caps and words are separated by and underscore.

https://docs.revrobotics.com/duo-build/actuators/motors
https://docs.revrobotics.com/duo-build/actuators/motors/core-hex-motor#product-specs

Add the COUNTS_PER_MOTOR_REV and GEAR_REDUCTION variables to the op mode beneath where the
hardware variables are created.

public class HelloRobot_ArmControl extends LinearOpMode {
private DcMotor arm;

static final double COUNTS_PER_MOTOR_REV = 288;
static final double GEAR_REDUCTION = 2.7778;

Now that these two variables have been defined, we can use them to calculate two other variables: the
amount of encoder counts per rotation of the 125T driven gear and the number of counts per degree moved.

Calculating counts per revolution of the 125T gear (or COUNTS_PER_GEAR_REYV)is the same formula used
in Encoder Navigation for our COUNTS_PER_WHEEL _REV variable. So to get this variable we can
multiple COUNTS_PER_MOTOR_REV by GEAR_REDUCTION .

static final double COUNTS_PER_GEAR_REV = COUNTS_PER_MOTOR_REV * GEAR_REDUCTION;

To calculate the number of counts per degree or moved or COUNTS_PER_DEGREE divide the
COUNTS_PER_GEAR_REYV variable by 360.

static final double COUNTS_PER_DEGREE = COUNTS_PER_GEAR_REV/360;

Add both these variables to the op mode.

public class HelloRobot_ArmControl extends LinearOpMode {
private DcMotor arm;

static final double COUNTS_PER_MOTOR_REV = 288;

static final double GEAR_REDUCTION = 2.7778;

static final double COUNTS_PER_GEAR_REV = COUNTS_PER_MOTOR_REV * GEAR_REDUCTION;
static final double COUNTS_PER_DEGREE = COUNTS_PER_GEAR_REV/360;

Finally we need to create a non-constant variable that will act as our position. Create a variable called
armPosition above the waitForStart(); command.

public void runOpMode() {
arm = hardwareMap.get(DcMotor.class, "arm");

int armPosition;

waitForStart();

Add this variable to the if (gaempadl.dpad_up) sectionofthe Target Position 1if/else
i f statement, as this section dictates the 90 degree position. To get to the 90 degree position, the arm needs

@ Recall that setTargetPosition() requires an integer to be its parameter. When defining
armPosition rememberto add the line (int) in frontof the double variable. However, you
need to be cautious of potential rounding errors. Since COUNTS_PER_MM is part of an equation it
is recommended that you convert to an integer after the result of the equation is found.

armPosition = (int) (COUNTS_PER_DEGREE * 45);

while (opModeIsActive()) {

if(gamepadl.dpad_up){
armPosition = (int) (COUNTS_PER_DEGREE * 45);
arm.setTargetPosition(83);
arm.setMode (DcMotor.RunMode.RUN_TO_POSITION) ;
arm.setPower (0.4);

}
Settarget positionto armPostion.

if(gamepadl.dpad_up){
armPosition = (int) (COUNTS_PER_DEGREE * 45);
arm.setTargetPosition(armPosition);
arm.setMode (DcMotor.RunMode .RUN_TO_POSITION) ;
arm.setPower (0.4) ;

}
else if (gamepadl.dpad_down) {
arm.setTargetPosition(0);
arm.setMode (DcMotor.RunMode .RUN_TO_POSITION) ;
arm.setPower (0.4);

}

@ We could change what armPosition isequaltointhe gamepadl.dpad_down portion of
the if/else if statementsuch as:

else if (gamepadl.dpad_down){
armPosition = (int) (COUNTS_PER_DEGREE * 0);
arm.setTargetPosition(armPosition);
arm.setMode (DcMotorEx.RunMode.RUN_TO_POSITION) ;
arm.setPower (0.4);

}

In this case we would consistently redefine armPos-ition to match the needs of whatever
positions we want to create. Since our only two positions at the moment are our starting position
and our 90 degree position itisn't necessary However, it is a good practice to create a variable in
situations like this. If we want to add another position later, we can easily edit the variable to fit
our needs.

Using Limits to Control Range of Motion

In the previous sections you worked on some of the building blocks for restricting an arms range of motion.
From those sections you should have the foundation you need to perform basic arm control. However, there
are some other creative ways you can use encoder positions and limits to expand the control you have over
your arm.

This section will cover two additional types of control. The first type of control we will explore is the idea of
soft limits. In the Adding a Limit Switch section we discuss the concept of physical limits of a mechanism
however, there may be times you need to limit the range of motion of an arm without installing a physical
limit. To do this position based code can be used to create a range for the arm.

Once you have a basic idea of how to create soft limits, we will explore how to use a limit switch (like a
touch sensor) to reset the range of motion. This type of control reduces the risk of getting stuck outside of
your intended range of motion, which can affect the expected behavior of your robot.

To set the soft limits we will use some of the basic logic we established in previous sections, with some
edited changes. Start with a Basic Op Mode and add the constant variables from the Calculating Target
Position section to the op mode.

@TeleOp

public class Basic extends LinearOpMode {

private DcMotor arm;

static final double COUNTS_PER_MOTOR_REV = 288;

static final double GEAR_REDUCTION = 2.7778;

static final double COUNTS_PER_GEAR_REV = COUNTS_PER_MOTOR_REV * GEAR_REDUCTION;
static final double COUNTS_PER_DEGREE = COUNTS_PER_GEAR_REV/360;

@Override

public void runOpMode() {
arm = hardwareMap.get(DcMotor.class, "arm");

waitForStart();

while (opModeIsActive()) {
telemetry.addData("Status", "Running");
telemetry.update();

Next we need to create our upper and lower limits. Create two new integer variables one called
minPosition andone called maxPosition .Add both of these to the in the initialization section of the

on mode ahove the waditForStart () :command.

public void runOpMode() {
arm = hardwareMap.get(DcMotor.class, "arm");

int minPostion;
int maxPosition;
waitForStart();

For now we wantthe minPosition setas our starting position and the maxPosition setto our 90
degree position. Set minPos-+ition equal to 0 and set maxPosition equal to COUNTS_PER_DEGREE
times 45 .

‘ @ Remember you need to make a data type conversion!

int minPostion = 0;
int maxPosition = (int) (COUNTS_PER_DEGREE %*45);

An if/else 1if statementneeds to be added to control the arm, for this we can use the same basic logic
we use in the Basics of Programming and Arm.

while (opModeIsActive()){
if(gamepadl.dpad_up){
arm.setPower (0.5);

}
else if (gamepadl.dpad_down){
arm.setPower (-0.5);

}
else {
arm.setPower (0) ;

}

To set the limit we need to editour if/else 1f statementso thatthe limits are builtin. If DpadUp is
selected and the position of the arm is less than the maxPos-+ition then the arm will move to the
maxPosition.If DpadDown is selected and the position of the is greater thatthe minPosition then
the arm will move towards the minPosition.

while (opModeIsActive()) {
if (gamepadl.dpad_up && arm.getCurrentPosition() < maxPosition) {
arm.setPower (0.5);

}

else if (gamepadl.dpad_down && arm.getCurrentPosition() > minPosition) {
arm.setPower (-0.5) ;

}

else {
arm.setPower (0) ;

3

@ The current code configuration will stop the motor at any point that the conditions to power the
motor are not met. Depending to factors like the weight of the mechanism and any load thatitis
bearing, when the motor stops the arm may drop below the maxPosition . Take time to test
out the code and confirm that it behaves in the way you expect it to.

Overriding Limits

One of the benefits of having a soft limitis being able to exceed that limit. Since encoders zero tick position
is determined by the position of the arm when the Control Hub powers on; if attention is not payed to what
position the arm is on power up the range of motion of the arm is affected. For instance, if we have to reset
the Control Hub while the arm is in the 90 degree position, the 90 degree position is equal to 0 encoder
ticks. One way around this is to create an override for the range of motion.

There are a few different ways an override of sorts can be created, in our case we are going to use the a
button and touch sensor to help reset our range.

Start by editing the if/else if statement to add another else if condition. Use the line
gamepadl.a asthe condition. Add atheline arm.setPower (-0.5); asthe action item.

while (opModeIsActive()) {
if (gamepadl.dpad_up && arm.getCurrentPosition() < maxPosition) {
arm.setPower (0.5);

}

else if (gamepadl.dpad_down && arm.getCurrentPosition() > minPosition) {
arm.setPower (-0.5);
}

else if(gamepadl.a){
arm.setPower (-0.5);

else {

arm.setPower (0) ;

3

Now that we have this change in place, when the a button is pressed the arm will move toward the starting
position. When the arm reaches and presses the touch sensor we wantto STOP_AND_RESET_ENCODER .

We can create another if statement that focuses on performing this stop and reset when the Touch Sensor
is pressed. Since the Touch Sensor reports true when its not pressed and false whenitis, we will
need to use the logical not operator ! .

@ The not operator ! can be used in conditional binary statements when you need inverse
whether something is true of false.Forinstance,an if statement activates when

something is true, butwhen touch.getState(); reports true itis notpressed. In our
case we want this if statement to activate when the Touch Sensor is pressed thus we need to use
the not operator.

if (!touch.getState()) {
arm.setMode (DcMotor.RunMode.STOP_AND_RESET_ENCODER) ;

So, if the Touch Sensor returns false (oris pressed) the motor run mode
STOP_AND_RESET_ENCODER will be activated causing the motor encoder to reset to O ticks.

Now that this code is done, try testing it!

@TeleOp

public class HelloRobot_ArmControl extends LinearOpMode {
private DcMotor arm;
private Servo claw;
private Gyroscope 1imu;
private DcMotor leftmotor;
private DcMotor rightmotor;
private DigitalChannel touch;

static final double COUNTS_PER_MOTOR_REV = 288;

static final double GEAR_REDUCTION = 2.7778;

static final double COUNTS_PER_GEAR_REV = COUNTS_PER_MOTOR_REV * GEAR_REDUCTION;
static final double COUNTS_PER_DEGREE = COUNTS_PER_GEAR_REV/360;

@Override

public void runOpMode() {
arm = hardwareMap.get(DcMotor.class, "arm");
claw = hardwareMap.get(Servo.class, "claw");
imu = hardwareMap.get(Gyroscope.class, "imu");
leftmotor = hardwareMap.get(DcMotor.class, "leftmotor");
rightmotor = hardwareMap.get(DcMotor.class, "rightmotor");
touch = hardwareMap.get(DigitalChannel.class, "touch");

int minPostion = 0;
int maxPosition = (int) (COUNTS_PER_DEGREE *45);

waitForStart();

// run until the end of the match (driver presses STOP)
while (opModeIsActive()) {
if (gamepadl.dpad_up && arm.getCurrentPosition() < maxPosition) {
arm.setPower (0.5);

}

else if (gamepadl.dpad_down && arm.getCurrentPosition() > minPosition) {

arm.setPower (-0.5);

else if (gamepadl.a) {
arm.setPower (-0.5) ;

}
else {

arm.setPower (0);

}
if (!touch.getState()) {
arm.setMode (DcMotor .RunMode.STOP_AND_RESET_ENCODER) ;

}

telemetry.addData("Arm Test", arm.getCurrentPosition());
telemetry.update();
}

Using Encoders

Basic Encoder Concepts

Each motor designed by REV has an encoder built into it that keeps track of its rotation. To use it, you must
have a 4-pin JST PH cable connecting the motor to the Control Hub (REV-31-1595) or Expansion Hub
(REV-31-1153), next to the 2-pin JST VH cable used to provide power to the motor.

Encoder values are measured in “ticks.” Different motors have different numbers of ticks per rotation of the
output shaft based on the gear ratio of the motor. When the Control Hub is turned on, all of its encoder ports
are at 0 ticks. As a motor moves forward, its encoder value increases. As a motor moves backwards, its
encoder value decreases.

For more information see the section on encoders.

Choosing a Motor Mode

Your programs can always access the encoder values directly, but you can also direct the Control Hub to
use the encoder values to maintain a motor’s speed, or maintain a particular position. You do this by
changing the motor’s mode.

@ Itis recommended to use the latest Control Hub and Expansion Hub firmware before using
RUN_USING_ENCODER mode or RUN_TO_POSITION mode.

STOP_AND_RESET_ENCODER Mode

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Place a motor in this mode when you want to set its encoder position back to 0. The motor will stop. To start
itagain, you need to place the motor into one of the other three modes. It is recommended to place each
motor you will be using encoders with into this mode at the start of each program, so that you know what

mAanitian Hha maAtAarv ia AtAavhinA ALE s

RUN_WITHOUT_ENCODER Mode

Use this mode when you don’t want the Control Hub to attempt to use the encoders to maintain a constant
speed. You can still access the encoder values, but your actual motor speed will vary more based on
external factors such as battery life and friction. In this mode, you provide a power level in the -1 to 1 range,
where -1 is full speed backwards, 0 is stopped, and 1 is full speed forwards. Reducing the power reduces
both torque and speed.

‘ @ This mode is a good choice for drivetrain motors driven by joysticks on the gamepad.

RUN_USING_ENCODER Mode

In this mode, the Control Hub will use the encoder to take an active role in managing the motor’s speed.
Rather than directly applying a percentage of the available power, RUN_USING_ENCODER mode targets
a specific velocity (speed). This allows the motor to account for friction, battery voltage, and other factors.

@ This mode is a good choice for operations, like a flywheel, that require a specific speed and can
use buttons on a gamepad for control.

RUN_TO_POSITION Mode

In this mode, the Control Hub will target a specific position, rather than a specific velocity. You still set a
velocity, butitis only used as the maximum velocity. The motor will continue to hold its position even after it
has reached its target.

@ This mode is a good choice for operations, like an arm, that require a specific position and can
use buttons on a gamepad for control.

Reading the Encoder Value

Blocks

In Blocks, you access the current encoder value by using the DcMotor CurrentPosition block.

—*LinearOpMode e
: g _Motnr * [CurrentPosition ~ I =
=1 Gamepad

W Arctoatare

T UL D

=128 Motor + & 68 Direction REVERSE -

= Dual
p Extended S—
Motor - B Direction |
b Sensors Motor -
Java

In Java, you access the current encoder value by calling getCurrentPosition() ona

DcMotor or DcMotorEx object. This sample program prints the encoder value for a motor
configured with the name “Motor” to telemetry:

package org.firstinspires.ftc.teamcode;

// import lines were omitted. OnBotJava will add them automatically.

@TeleOp

public class JavaEncoderTest extends LinearOpMode {
DcMotorEx motor;

@Override
public void runOpMode() {

motor = hardwareMap.get(DcMotorEx.class, "Motor");
waitForStart();

while (opModeIsActive()) {

telemetry.addData("Encoder value", motor.getCurrentPosition());
telemetry.update();

Setting the Motor Mode

Blocks

In Blocks, you set the motor’s mode with this block. You can select different modes from its
dropdown menu.

— LinearOpMode

T CurrentPosition

W Actuators

set . (00" Direction REVERSE -
P Sensors

b Other Nevires

T T q Motor - I[Jireciion v I
P Android

P Uiilities
I Loge % Motor - I Mode - Lol RunMode RUN_WITHOUT_ENCODER -
| Loops
| wmatn - Mode ~
| Text
| st T Moto Bower - Lol 1
| variables - Motor = & e 10
Java

Here is a snippet of code that demonstrates how to do the same thing in Java. You can skip the
first line if you already have retrieved the motor object from hardwareMap. Change
RUN_WITHOUT_ENCODER to the desired motor mode (STOP_AND_RESET_ENCODER,
RUN_WITHOUT_ENCODER, RUN_USING_ENCODER, or RUN_TO_POSITION).

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, "Motor");
motor .setMode (DcMotor .RunMode . RUN_WITHOUT_ENCODER) ;

Using RUN_WITHOUT_ENCODER

The RUN_WITHOUT_ENCODER motor mode is very straightforward, you simply set a power in the range
of -1.0 to 1.0. However, if you try to set a velocity (which will be covered later on), the motor will automatically
be switched into RUN_USING_ENCODER mode.

Blocks

The power level is set in Blocks mode using this block:

= LinearOpMode
. Motor = | CurrentPosition ~

W Actuators
== 8 Motor ~ & o8 Direction REVERSE -
= Dual
P Extended s—
> Sensors :
P Other Devices
P Android =4 Motor - I8 Mode - Fid RunMode RUN WITHOUT _ENCODER -
B Utilities
| Logic " Mode -
| Loops
| math
I RAntrr - Draarmr = 4

Text 3 [U IR B LR) »]

Lists

Variables Setm_ Power = L 0
Functions

Java

The power level is setin Java by calling setPower () on a DcMotor or DcMotorEx object, as
is shown in this snippet. You can skip the first two lines if you already have retrieved the motor
object from hardwareMap and set the mode to RUN_WITHOUT_ENCODER.

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, '"Motor");
motor.setMode (DcMotor .RunMode . RUN_WITHOUT_ENCODER) ;

// This will run the motor forward at half-power

double motorPower = 0.5;

motor .setPower (motorPower) ;

Using RUN_USING_ENCODER

In RUN_USING_ENCODER mode, you should set a velocity (measured in ticks per second), rather than a
power level. You can still provide a power level in RUN_USING_ENCODER mode, but this is not
recommended, as it will limit your target speed significantly. Setting a velocity from
RUN_WITHOUT_ENCODER mode will automatically switch the motor to RUN_USING_ENCODER mode.
You should pick a velocity that the motor will be capable of reaching even with a full load and a low battery.

Blocks

Providing a velocity is an extended motor feature, which means that the block for it is located
under DcMotor > Extended. You can see it here:

Hnearopiode - g iotor - WM TargetPositionTolerance - Roll. 10

(= Gamepad
W Actuators

¥ DcMotor - TargetPositionTolerance ~
= Dual

.
il Voo~ Welocity - AL 10 <

P Sensors

> Otner Devices .

B Androicd

Java

The velocity is setin Java by calling setVelocity() ona DcMotorEx object, as is shown in
this snippet. You can skip the first two lines if you have already retrieved the motor object as a
DcMotorEx from hardwareMap and set the mode to RUN_USING_ENCODER.

DcMotorEx motor = hardwareMap.get(DcMotorEx.class, "Motor");
motor.setMode (DcMotor.RunMode .RUN_USING_ENCODER) ;

// This will turn the motor at 200 ticks per second

double motorVelocity = 200;
motor.setVelocity(motorVelocity);

Using RUN_TO_POSITION

To use RUN_TO_POSITION mode, you need to do the following things in this order:

1. Setatarget position (in ticks)
2. Switchto RUN_TO_POSITION mode

3. Setthe maximum velocity

You should reset the encoders (switch to STOP_AND_RESET_ENCODER mode) during initialization
when you use RUN_TO_POSITION mode. If you are using it with a mechanism such as a lift, you have to
be careful to make sure that you always have the motor in the same physical location when you reset the
encoders, or else your target position won't mean the same thing between runs.

The motor will continue to hold its position even after it has reached its target, unless you set the velocity or
power to zero, or switch to a different motor mode.

The following examples assume that the motor used is a Core Hex Motor. If it is a motor that has a more
precise encoder, such as an HD Hex Motor, higher velocity and target position values will be more
appropriate.

Blocks

Here is a complete Blocks program that uses RUN_TO_POSITION.

" Motor - Mode - o1 RunMode
1 RunToPositionBlocks M waitk orStart
F@E = 1 RunToPositionBlocks i opModelsAciive

STOF_AND_RESET _ENCODER -

3| Set the motor's target position to 300
o TargetPosition * R0

| Switch to RUN_TO POSITION mode
RunMode RUN_TO_POSITION -

| Start the motor moving by setti themaxuelndtyl
to 200 ticks per second

.~ whie * |l | RunToPositionBlocks
do
call .
key velocity
number
call .
key
(= @B Motor = [CurrentPosition ~
call :
key is at target
text
Ll :

If you want to wait for the motor to reach its target position before continuing in your program, you
can use a while loop that checks if the motor is busy (not yet at its target):

while the motor is maving to the ta
repeat (T | call N isBusy
sl Display telemetry while we wait

call .
key Status

text Waiting for the motor to reach its target position

call .

The motor has reached its target position
and the program will continue

Java

package org.firstinspires.ftc.teamcode;
// import lines were omitted. OnBotJava will add them automatically.

@TeleOp
public class JavaRunToPositionExample extends LinearOpMode {
DcMotorEx motor;

@Override
public void runOpMode() {

motor = hardwareMap.get(DcMotorEx.class, "Motor");
// Reset the encoder during initialization
motor.setMode (DcMotor.RunMode . STOP_AND_RESET_ENCODER) ;

waitForStart();

// Set the motor's target position to 300 ticks
motor.setTargetPosition(300);

// Switch to RUN_TO_POSITION mode
motor.setMode (DcMotor.RunMode .RUN_TO_POSITION) ;

// Start the motor moving by setting the max velocity to 200 ticks per seco
motor.setVelocity(200);

// While the Op Mode is running, show the motor's status via telemetry
while (opModeIsActive()) {
telemetry.addData("velocity", motor.getVelocity());
telemetry.addData("position", motor.getCurrentPosition());
telemetry.addData("is at target", !motor.isBusy());
telemetry.update();

If you want to wait for the motor to reach its target position before continuing in your program, you
can use a while loop that checks if the motor is busy (not yet at its target):

// Loop while the motor is moving to the target

while(motor.isBusy()) {
// Let the drive team see that we're waiting on the motor
telemetry.addData("Status", "Waiting for the motor to reach qits target");
telemetry.update();

}

// The motor has reached -its target position, and the program will continue

Android Studio - Deploying Code Wirelessly

Android Debug Bridge (ADB) utility is the tool used by Android Studio to connect and control Android
devices, like the Control Hub. Android Studio, using ADB, allows users to build and install the Robot
Controller app onto their Control Hub.

https://www.youtube.com/watch?v=yFbMWZbwuhQ

By default ADB supports using a hardwire connection via USB to deploy code to Android Devices. ADB
does support a wireless mode where the build and install process is sent over Wi-Fi. The Control Hub is

configured to support ADB wireless connections on port 5555. To deploy code over the Wi-Fi connection the

user will need to set up Wireless ADB.

Setting Up Wireless ADB using the REV Hardware Client

To set up wireless ADB using the REV Hardware Client you will need a laptop or PC with both Android

Studio and the REV Hardware Client installed.

Power on the Control Hub, by plugging the 12V
Slim Battery (REV-31-1302) into the XT30

connector labeled “BATTERY” on the Control Hub.

The Control Hub is ready to connect with a PC
when the LED turns green.

Note: the light may blink blue every ~5 seconds to
indicate that the Control Hub is healthy depending
on Robot Controller version.

Silm Battery

Control Hub

|
E
as. g.

~5 Seconds \

https://www.youtube.com/watch?v=yFbMWZbwuhQ
https://www.revrobotics.com/rev-31-1302/

MHS-Guest

REV-Demo
Secured

E Connect automatically

o Connect
Connect to the Wi-Fi Network created by the

Control Hub REV-Guest
Note: Connect to the REV Hardware Client over REV_loT
USB if the password needs resetting. Southland
TC8715DD4
ge D]

Mobile
Airplane mode hotspot

Q f

Hardware Downloads Ab

Connected Hardware

i Control Hub REV-Demo
B WiFi: 192.168.43.1

i

Open the REV Hardware Client and confirm the
Control Hub is connected over Wi-Fi

() The Control Hub should be listed in the Android Studio devices dropdown

i File Edit View Mavigate Analyze Refactor Build Run Tools

FtcRobotController

1

armmit

@

B Terminal “§ Build 6 Logeat @ Profiler = Database Inspector Q Event Log

(7 minutes ago)

Sensors

Introduction to Sensors

Sensor Basics

When starting out many of the robot actions can be accomplished by turning on a motor for a specific
amount of time. Eventually, these time-based actions may not be accurate or repeatable enough. As battery
power drains while the robot is running and mechanisms wearing in through use can all affect time-based
actions. Fortunately, there is a way to give feedback to the robot about how it is operating by using sensors;
devices that are used to collect information about the robot and the environment around it.

Sensors provide information that allows you to program the robot to use this information to perform specific
actions. This allows the robot to perform at its best and in a repeatable manner. A few scenarios that can
benefit from a sensors information are listed below.

Scenarios where a sensor is needed:

e The robot needs to autonomously move to a specific location and stop there.
e The robot needs to move forward at a green signal and stop moving at a red signal.

e The robot has an arm that needs to be prevented from rotating too far or it may damage other parts of the
robot.

e The robot needs to stop 1 meter away from an opaque wall.

e The robot needs to be able to tell how many game objects itis currently holding inside its hopper.

Different Sensor Types and Uses

Battery — §T

I Expansion Ports

. - Sensor Ports

I/ N CONTRO/L -8 Basic Sensors

- Digital Ports

- Analog Parts
Intermediate Sensors
- 12C Ports

Motor & Encoder Ports

Servo Ports

Control Hub ports

In the REV Robotics Control System sensors are classified as basic, intermediate, or advanced. This
division among sensors is based on programming complexity. Basic sensors can typically be coded using
a iflelse statement. Intermediate sensors, like the Color Sensor or Encoders, require a higher level
understanding of programming. Advanced sensors require an advanced knowledge of programming.
Visions sensors and using the Inertial Measurement Unit (IMU) are considered advanced.

Basic
In the REV Robotics Control System, both Analog and Digital sensors are considered basic sensors.

Digital sensors provide binary information: information that can take one of two possible values or states.
These states are represented in programming languages as: TRUEI/FALSE or 1/0. Electrically, these states
are usually represented as two voltages: a High voltage and a Low voltage. For REV Hubs, High is 3.0V
and Low is OV.

A touch sensor is a common digital sensor. It has two states: pressed and not-pressed.

Analog sensors provide a range of information with an almost infinite set of values, instead of just two.
These values are usually represented in programming languages as decimal numbers. Electrically, these
values are represented as voltage. REV Hubs can measure voltages on the analog ports between 0V and
5.0V.

Depending on the sensor, the reported voltage can represent anything that can't be represented by two
digital states. A potentiometer is a common analog sensor that reports the angle of an attached shaft as
voltages.

@ Some sensors in the REV Control System are capable of running up to 5V. To learn more about
sensor voltage visit the pages of the individual sensors!

The table below gives the basic usage scenarios for analog and digital sensors

Digital Analog

Gives feedback as a proportional voltage range.
This type of sensor is ideal for knowing exactly
where a mechanism is, like a dial on a radio.

Gives feedback as either on or off. This type of
sensor is ideal for setting limits of a mechanism.

Digital Sensors

e Touch Sensor: A sensor with a button. The button press can be used to trigger actions like stopping
motors.

e Magnetic Limit Switch: A sensor that detects magnetic fields. When there is sufficient field strength of
either magnetic pole detected the sensor is triggers and a limit of movement can be established.

Analog Sensors

e Potentiometer: A sensor that senses the angular position of a shatft.

Intermediate

I12C sensors are considered intermediate because they give feedback through two-way communication with
a robot controller. These types of sensors allow for more complex data to communicate to the robot, such as
color values of an object.

e Color Sensor: A sensor capable of sensing colors and proximity of objects.

e 2m Distance Sensor: A sensor typically used to detect the distance from the sensor to other opaque
objects.

All REV Robotics motors contain a built-in intermediate-level sensor called an Encoder. An Encoder, in the
context of robotics, is a type of digital sensor that converts rotary motion into digital signal. These type of
sensors require “decoding” to get this information into a usable form. The Control Hub and Expansion Hub
have built in decoding through the “Encoder Ports” under the motor ports.

Advanced

Advanced sensors, in the REV Control System, are considered advanced as they rely on complex coding
and information from other sensors in order to work effectively. Both the IMU and vision sensors require
higher level code in order to decipher information being received from the sensor.

Vision IMU

Gives feedback as images to the robot controller. The IMU incorporates three sensors: a 3-axis
These types of sensors require the use of image accelerometer, a 3-axis gyroscope, and a 3-axis

processing software, like VuForia, to use to their full geomagnetic sensor. This sensor can be used to

Digital

Digital Sensor Basics

The information from digital sensors comes in two states, also known as binary states. The binary state of a
digital sensor is either low or high. This is similar to a light switch being on or off.

@ Binary information, or states, can be thought of as an "either/or"; a light switch can either be in an
'on’ state or an 'off state. On/off, 0/1, low/high, and FALSE/TRUE are all different ways of
presenting binary information. In programming FALSE/TRUE is used most often.

The main difference between a light switch and a digital sensor is that a digital sensor has a default state.
The default state is typically its inactive states. Digital sensor datasheets typically will report the sensors
active behavior, either active-low or active-high. With an active-high behavior, when the digital sensor is
triggered (or activated) you can detect a change in code from a "logic" low state to a "logic" high state.

@ Logic Level represents the voltage difference between the signal and ground of the Control and
Expansion Hub's sensor ports. Both Hubs and REV Sensors operate on a 3.3V logic level. This
means the digital sensor needs an operating voltage of 3.3V for use with the Hub. If you are
looking to use a 5V digital sensor you will need a Logic Level Converter. See Using 5V Sensors
for more information.

This change is from FALSE to TRUE and you can program your robot to act accordingly with this
information. Check the datasheet for the sensor you are using to determine its active behavior is and how
the behavior is reported in your code.

REV carries the following digital sensors:

e Touch Sensor (REV-31-1425)
e Magnetic Limit Switch (REV-31-1462)

Wiring

DIGITAL

SIGNAL
GROUND

https://www.revrobotics.com/rev-31-1425/
https://www.revrobotics.com/rev-31-1462/

5

‘2 CHEC
B
[| ERE I

3 4

2

Digital sensors connect to the Control Hub (REV-31-1595), or Expansion Hub (REV-31-1153), via a JST PH
4-Pin Sensor Cable and the Digital Ports, shown in the image above. The color-coding of the digital ports in
the image corresponds with each wire in the JST PH 4-Pin Sensor Cable. Following convention, the black
wire is ground and the red wire is power. The blue (n) and white (n+1) wires are the communication (signal)
channels along which the sensor sends feedback to the Hubs.

Each digital port on the Hub is capable of acting as two separate ports, thanks to the two channels of
communication. This is why the ports are marked as 0-1, 2-3, etc. The image above shows which channel of
communication corresponds with which port. The n+1 channel operates on odd-numbered ports 1-7 and the
n channel operates on the even number ports 0-6.

Two digital sensors may be hosted on the same physical port using the Sensor Splitter Cable. That being
said, itis important to check the Pinout Diagram included in the datasheets for each individual sensor, as
certain sensors, like the Touch sensor, use only one of the communication channels.

Configuration

Before a sensor can be programmed it must be added to the Robot Configuration. The configuration file
stores all configured devices in the Control Hub's "hardwareMap," which can be called to in the code to
establish the line of communication between devices.

The steps below show the basic configuration for digital devices. In the example, the Touch Sensor is
configured as "REV Touch Sensor" on port 1.

Step 1

While in the configuration select the Digital Devices option. This will open a screen that shows the eight

digital ports.

Active Configuration (unsaved) TestConfig

Done @ Cancel

Active Configuration: (unsaved) TestConfig Port Attached

‘Expansion Hub 1

Motors Device name

Servos 1 ‘ Nothing S

Digital Devices I |

Device name

Analog Input Devices
2 ‘ Nothing v

12C Bus 0

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

12C Bus 1

Device name
12C Bus 2 3 | Nothing v
I12CBus 3

Device name

4 Nothini -

Step 2

In the drop-down menu for Port 1 select "REV Touch Sensor." After itis selected name the sensor. In this
example, the Touch Sensor is named "touch," but any naming convention can be used.

Active Configuration: (unsaved) TestConfig Active Configuration: (unsaved) TestConfig
Port Attached Port Attached
0 Nothing v 0 Nothing v
L
Device name Device name
1 REVTouchSensor v 1 REVTouchSensor v
~ Nothing | touch‘
DI Device name
Digital Device
v 2 | Nothing v
LED
pl REV Touch Sensor D
3 | Nothing v 3 | Nothing v
Device name Device name
4 Nothini - 4 Nothini v

Step 3

When you have finished configuring the sensor hit Done. The app will return to the previous screen

@ For more information on configuring the Touch Sensor or Magnetic Limit Switch go to the sensor
datasheets.

Applications

How do digital sensors help a robot navigate the world around it? The REV Touch Sensor and REV

Magnetic Limit Switch are most commonly used as limit switches! Limit switches can help detect when a
mechanism, like an arm and/or a lift, has reached its physical limits. Installing a limit switch can help keep
robot mechanisms from overextending and breaking. They can also be used to zero out the position of motor
encoders to further reduce mechanical failure.

For more information on how to use the REV Digital Sensors as limit switches, sensor specifications, coding
examples, and more; click one of the links below to head to the sensor datasheets

Touch Sensor (REV-31-1425)
Magnetic Limit Switch (REV-31-1462)

Digital LED Indicator (REV-31-2010)

Analog

Analog Sensor Basics

Analog sensors can report an almost infinite number of states unlike digital sensors that report only two
states. As the state of the sensor changes, the voltage reporting back to the robot changes as well. Think of
a dimmer switch, the brightness of the lights in the room depends on where the slider or knob is positioned
along the scale of potential positions. As the knob is adjusted the voltage level adjusts proportionally and
the light continuously changes to the output from the knob.

@ Can you think of anything that acts like analog sensors around your household? Here are some
we thought of: scale, thermometer, volume knob

Unlike the binary (low/high) status of digital sensors, analog sensors consider all numbers within a specific,
given range. When using an analog sensor the actionable trigger will vary depending on the sensor.
Consider a potentiometer attached to an arm, the output voltage (signal) will correspond to an angle of the
arm. Knowing the angle of the arm then allows you to decide where to stop the arm along its travel path.

@ The Control Hub and Expansion Hub can read voltages ranging from OV to 5V.

REV Robotics offers analog sensor, known as a Potentiometer (REV-31-1155). The Potentiometer can be
used to sense or measure the angular position of a shaft.

Wiirinn

https://docs.revrobotics.com/touch-sensor/
https://docs.revrobotics.com/magnetic-limit-switch/
https://docs.revrobotics.com/rev-31-2010/
https://www.revrobotics.com/rev-31-1155/

LA NI lll”

ANALOG

SIGNAL
GROUND

2:3

mmm-
- 0

W

Analog sensors connect to the Control Hub (REV-31-1595), or Expansion Hub (REV-31-1153), via a JST
PH 4-Pin Sensor Cable and the Analog Ports, shown in the image above. The color-coding of the analog
ports in the image corresponds with each wire in the JST PH 4-Pin Sensor Cable. As a convention, the
black wire is ground and the red wire is power. The blue (n) wire and white (n+1) wire are the
communication (signal) channels along which the sensor sends feedback to the Hubs.

Each analog port on the Hub is capable of acting as two separate ports, thanks to the two channels of
communication. This is why the ports are marked as 0-1 and 2-3. The image above shows which channel of
communication corresponds with which port. The n+1 channel operates on odd-numbered ports 1-3 and the
n channel operates on the even number ports 0-2.

Two analog sensors may be hosted on the same physical port using the Sensor Splitter Cable (REV-31-
1386). That being said, it is important to check the Pinout Diagram included in the datasheets for each
individual sensor, as certain sensors, like the REV Potentiometer, use only one of the communication
channels.

Configuration

Before a sensor can be programmed it must be added to the Robot Configuration. The configuration file
stores all configured devices in the Control Hub's "hardwareMap," which can be called to in the code to
establish the line of communication between devices.

The steps below show the basic configuration for analog devices. In the example, the Potentiometer will be
configured as "Analog Input™ on port 0.

Step 1

While in the configuration select the Analog Input Devices option. This will open a screen that shows the
four analog ports.

Active Configuration (unsaved) TestConfig

Done @ Cancel

Active Configuration (unsaved) TestConfig Port Attached

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1386/

‘Expansion Hub 1

Motors Device name

. 1 Nothing v

Digital Devices

Device name

Analog Input Devicesl R |
2 Nothing v

I12C Bus 0
12C Bus 1 Device name
|12C Bus 2 3 | Nothing v
I12C Bus 3

Device name

Step 2

In the drop-down menu for Port O select "Analog Input.” After it is selected name the sensor. In this example,
the Potentiometer is named "potentiometer,” but any naming convention can be used.

Active Configuration: TestConfig Active Configuration: TestConfig

Done @ Cancel Done @ Cancel
Port Attached Port Attached
0 Analog Input v 0 Analog Input v

Nothing potentiometer

Device name

Analog Input

1 v 1 | Nothing v
J

~ MR Optical Distance Sensor

o MR Touch Sensor

Device name

2 Nothing v 2 Nothing v
Device name Device name

3 Nothing v 3 Nothing v
Device name Device name

Step 3

When you have finished configuring the sensor hit Done. The app will return to the previous screen

Applications

How does the Potentiometer help a robot navigate the world around it? Potentiometers are most commonly
used to measure the angle of an arm type joint. The angle measurement can be used to set or find a specific
position along the arm joint.

For more information on the REV Potentiometer's sensor specifications, coding examples, and more; click
one of the links below to head to the sensor datasheets

Potentiometer (REV-31-1155)

12C

I2C Sensor Basics

I2C is a common electronic communication standard that allows a host (the Hub) to communicate with
multiple devices on the same 12C bus. Each 12C port on a Hub is its own I12C bus. Every 12C device has a
unique address, a number that is normally fixed by the manufacturer. All of the devices on an individual I12C
bus must have a unique address so that the host can communicate with one device at a time. If two devices
have the same address, such as when using two of the same kind of sensors, they must be used on different
I2C buses otherwise the communication channels conflict.

@ While 12C is technically a digital communication protocol, itis more advanced than the simple
on/off style of basic digital sensors. 12C sensors require software drivers for the information from a
follower (sensor) to be interpreted by the leader (hub).

There are three 12C sensors within the REV system: the Inertial Measurement Unit (IMU), Color Sensor
(REV-31-1557), and 2m Distance Sensor (REV-31-1505). The IMU is built into the Control Hub (REV-31-
1595) and Expansion Hub (REV-31-1153) and is connected to 12C bus 0.

@ Logic Level represents the voltage difference between the signal and ground of the Control and
Expansion Hub's sensor ports. Both Hubs and REV Sensors operate on a 3.3V logic level. This
means the digital sensor needs an operating voltage of 3.3V for use with the Hub. If you are
looking to use a 5V 12C sensor you will need a Logic Level Converter. See Using 5V Sensors for
more information.

https://docs.revrobotics.com/potentiometer/
https://www.revrobotics.com/rev-31-1557/
https://www.revrobotics.com/rev-31-1505/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

Wiring

I e

o [arca]
~ [l
~[erod]
o[- EREMER

I2C sensors connect to the Control Hub (REV-31-1595), or Expansion Hub (REV-31-1153), via a JST PH 4-
Pin Sensor Cable and the 12C buses, shown in the image above. The color-coding of the 12C buses in the
image corresponds with each wire in the JST PH 4-Pin Sensor Cable. As a convention, the black wire is
ground and the red wire is power. The blue (SCLn) wire and white (SDAnN) wire are the communication
signals for each 12C bus on the Hubs.

Sensor feedback to the Hub works differently for the 12C sensor than it does for Analog or Digital sensors.
With the Analog and Digital Sensors, only one communication channel needs to be used by an individual
sensor. In contrast, an 12C sensor sends different kinds of information over the SDA (white) and SCL (blue)
wires. Since the 12C is transferring more complex data to the Hub then Analog or Digital sensors, there has
to be a component of harmonization, or consistency, as the data moves from the sensor to the Hub. The SCL
(Serial Clock) channel provides consistency by acting as a clock line and time-stamping the data provided
by the SDA (Serial Data) channel.

While itis possible to host more than one 12C sensor on the same bus, there are a couple of factors to take
into account. The Hub keeps track of the information from different sensors by considering the sensor's
address in relation to the data being sent. When two sensors have the same address, like the REV Color
Sensor V3 and the 2m Distance Sensor, they cannot be hosted on the same bus. Check the sensor
datasheets for all 1I2C sensors to determine what sensors can and cannot be hosted on the same bus.

Currently, REV Robotics does not produce a cable or breakout board to connect two sensors to one 12C port
on the Hub. A custom cable will need to be made in order to wire more than one 12C to the Hub.

(i) The internal IMU is hosted on I2C bus 0. See the configuration section below to learn more about
configuring a secondary sensor on bus 0.

Configuration

Before a sensor can be programmed it must be added to the Robot Configuration. The configuration file
stores all configured devices in the Control Hub's "hardwareMap," which can be called to in the code to
establish the line of communication between devices.

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

In order to function, all FTC legal 12C devices have drivers installed into the SDK. With regards to
configuration, this means that the device has to be set to the drop-down menu item that corresponds with its
drivers. Visit the datasheet for the sensor you are trying to configure to see how to configure it.

The steps below shows a basic configuration for 12C devices. The 12C Bus 0 hosts the internal IMU sensor
within the Hubs. In this example, the Color Sensor V3 is being added to Bus 0 as well.

Step 1

While in the configuration select the 12C Bus 0 option. This will open a screen that shows the IMU.

Active Configuration: (unsaved) TestConfig

Port Attached

Active Configuration: (unsaved) TestConfig
0 ‘ REV Expansion Hub IMU v
Fxpansion Hub 1 \imu
Motors Device name
Servos

Digital Devices

Analog Input Devices

I2C Bus 0 I e |

I2C Bus 1
I2C Bus 2

I12C Bus 3

Step 2

Press the Add button to add the Color Sensor to this bus. Select "REV Color Sensor V3" from the drop-down
menu and name the device.

Active Configuration: (unsaved) TestConfig
EEaE-
Port Attached Port Attached
0 ‘ REV Expansion Hub IMU v 0 | REV Expansion Hub IMU v ‘
hmu imu
Device name Device name
1 | Rev Color Sensor v3 v

‘ colorV3

Device name

Step 3

When you have finished configuring the sensor hit Done. The app will return to the previous screen.

Applications

How do 12C sensors help a robot navigate the world around it? The answer to this question is a bit more
diverse than it was for Analog or Digital sensors.

All three Color Sensors (V1-V3) sense color within a 2cm distance from the sensor. When mounted on the
robot this can help in autonomous period tasks where robots have to decide between several different
colored objects. Relic Recovery, Rover Ruckus, and Skystone all had autonomous tasks where the Color
Sensor helped robots choose between randomized jewels, minerals, and stones!

While the Color Sensors have some proximity sensing capabilities, the 2m Distance Sensor is able to detect
proximity with higher accuracy and reliability. When combined with odometry, the 2m Distance Sensor can
help the robot navigate obstacles on the field during autonomous!

The IMU has a built-in accelerometer, gyroscope, and magnetometer. There are a multitude of applications
for the IMU within autonomous op modes:

e Use the Gyroscope to drive in the straight lines and turn during autonomous

e Use the Accelerometer in conjunction with the gyroscope to avoid drift and give an approximation of
position/travel

¢ Use the IMU with motor encoders to track and determine robot placement on a field

For more information on the 12C sensor specifications, coding examples, and more; click one of the links
below to head to the sensor datasheets

Color Sensor V3 (REV-31-1557)
Color Sensor V2 (REV-31-1537)

Color Sensor V1 (REV-31-1154)

https://docs.revrobotics.com/color-sensor/
https://docs.revrobotics.com/color-sensor/color-sensor-v2/untitled
https://docs.revrobotics.com/color-sensor/color-sensor-v1/color-sensor-v1-overview

A MNlmbe . /AN AA AN\

IMU

IMU Basics

BELOW: IMU Details Shown in Enlarged View

N 35mm]
[cooYoooYoooYoooYoocooc! ifoooooc?) ro

——

o e
'ﬂ

Every REV Robotics Control Hub (REV-31-1595), and Expansion Hubs (REV-31-1153) purchased before
December 2021, have a builtin 9-axis IMU, or inertial measurement unit. The IMU incorporates three
sensors: a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis geomagnetic sensor. The accelerometer
measures the affect of forces on acceleration along the three axes. The gyroscope measures the rotational
location of the the Hubs along the axes. The geomagnetic sensor (or magnetometer) uses the Earth's
magnetic field to find orientation.

@ Expansion Hubs purchased AFTER December 2021 no longer include an internal IMU

/\ The accuracy of the magnetometer within the IMU is affected by proximity to surrounding
magnetic fields.

The data considered and used by the IMU includes: rotation along each axis, forces of acceleration along
each axis, and magnitude of acceleration. The rotational measurements for the gyroscope play an important
part in the use of the gyroscope for positioning and location of the robot.

e Heading is the measure of rotation along the z-axis. If the Hub is laying flat on a table, the z-axis points
upwards through the front plate of the Hub.

e Pitch is the measure of rotation along the x-axis. The x-axis is the axis that runs from the bottom of the
hub, near the servo ports, to the top of the hub ,where the USB ports are.

¢ Rollis the measure along the y-axis. The y-axis is the axis that runs from the sensor ports on the right to

https://docs.revrobotics.com/2m-distance-sensor/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

the motor ports on the left.

The orientation of the hub plays a large part into which measurement will be used to determine the
orientation of the robot as it moves.

Product Specifications

e |2C Address: 0x28
e Port:0

How to Use?

Application
There are a multitude of applications for the IMU within autonomous op modes:

e Use the Gyroscope to drive in the straight lines and turn during autonomous

e Use the Accelrometer in conjunction with the gyroscope to avoid drift and give an approximation of
position/travel

e Use the IMU with motor encoders to track and determine robot placement on a field
Configuration
Since some IMUs are already installed with in the Control or Expansion Hub the main concerns are Hub
position and configuration. The orientation of the Hub affects which axis is getting feedback.

The IMU always exists on 12C Bus 0.

@ To learn more on how to configure the IMU check out the I12C introduction page.

Adding an IMU to your Expansion Hub

@ If your Expansion Hub was purchased BEFORE December 2021, it already has an internal
IMU installed and you do not need to follow these steps.

Compatible External IMUs

There are a few options that will work for giving your Expansion Hub Gyro/IMU function.

1. Integrating Gyro with our Logic Level Converter and Sensor Cable Adapter - This is directly supported in
the FTC Programing environment but is just a single-axis gyro, not a full IMU.

2. navX2 Sensor Bundle - This is currently out of stock, but is also supported in the FTC programming
environment. Code examples are listed on AndyMark's page, and this product includes the correct
cables to use within FTC.

3. Adafruit 9-DOF Absolute Orientation IMU - This is the same IMU as in the Control Hub, but will require
you to either create an adapter cable or solder a cut sensor cable to the board. Plugging this in and
configuring the IMU on 12C port zero will allow you to use and program the same as an internal IMU.

Encoders

What is an Encoder?

An encoder is anything (device, software, person) that converts information from one format into another.
Some examples of encoding include:

e A transducer, like a speaker, which converts an electrical signal into sound waves
e Software which encodes an audio file into an mp3 to decrease file size

e A stenographer (court reporter) takes courtroom dialog and converts it into a written record

This section is about rotary encoders which are electro-mechanical devices which convert the angular
position of a shatft, like on a motor, to an electronic signal. These signals can be fed into a microcontroller,
which controls all robot functions, and then used to provide real world data to make better programming
decisions.

There are two main types of encoders: absolute and relative.

Absolute encoders return the actual angle of the rotation (e.g. 30°). Absolute encoders maintain position
information if the power is removed, and position data is immediately available when power is reapplied
with no rotation needed to read the current angle. The relationship between the encoder value and the motor
shaft is set when assembled and will always stay the same. Commonly these encoders use a specially
printed pattern disk which are read and converted to a known angle. Generally, absolute encoders are
easier to use when programming, but they are more complicated to manufacture so are larger, or more
expensive.

Relative encoders, which are also referred to as incremental encoders, provide information about the
motion of the shatft (e.g. forward at 5 RPM), and only provide data while the shatft is rotating. One way to
remember this is that relative encoders return information on the incremental change of the motor output
shaft. Relative encoders only provide pulses as the motor turns, and interpreting these pulses into useful
information must be done externally. A relative encoder does not know what position itis in at start-up, but it
is possible to create a calibration program that must be run at every start-up to obtain reference point to
calculate an angle from.

https://modernroboticsinc.com/product/integrating-gyro/
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/rev-31-1384/
https://www.andymark.com/products/navx2-micro-navigation-sensor-bundle
https://www.adafruit.com/product/4646
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/

Encoders measure a real world change (shaft rotation) and convert it to an electrical signal. Two common
ways to do this are using optical or magnetic feedback:

Optical encoders have a disk with a series of either slots or a reflective pattern around the outside which is
attached to the motor shaft. A light shines on or through the disk where the light can pass through or reflect
onto a photodiode (device which produces an electric signal when light shines on it). These sensors can be
very light and compact, but can be very sensitive to anything that might interfere with the light reaching the
photodiode. Finger prints on a reflective disk, or dust from a dirty environment can interfere.

Magnetic encoders have a magnet attached to the shaft of a motor and use Hall effect sensors to detect the
changing magnetic field as the shaft rotates. Magnetic encoders are able to operate in harsh or dirty
environments.

Magnetic Quadrature Encoders

A 12 pole magnetic quadrature encoder is installed on the rear of both the HD Hex Motor and Core Hex
Motor. The output shaft of the motor extends from the rear of the motor case and a multi-pole permanent
magnet is attached to the shaft. There are two Hall effect sensors, marked ‘A’ and ‘B’, mounted next to the
magnet at 90° to each other. As each of the 12 poles passes across one of the Hall effect sensors, it creates
a change in the magnetic field causing the sensor to generate a measurable voltage signal.

Multi-Pole Magnet

Magnet Spins with the Motor Output Shaft

Motor Shaft

Also Extends from the Rear of the Mofor

Rear of Motor Body

Hall Effect Sensor
Detects the Changing Magnetic Feild

70°

Typical Encoder Configuration Installed on the Rear of a Motor

Quadrature encoders are a specific type of relative encoder that have four different output states. If the root
quad-, means four, but there are only two sensors in this encoder, where does the name come from? The
output from the two Hall effect sensors are called “Channel A” and Channel B” respectively; an example of
the output is shown below. In a single period (T), defined as the duration of time of one complete cycle in a
repeating pattern, the timing diagram has four distinct states (see a, b, ¢, and d below), hence a quadrature
encoder.

Period (T)

Clockwise Quadrature Encoder Output Timing Diagram

The offset from Channel A to Channel B is because the sensors are offset from each other by 90°. As the
motor rotates one sensor will see the change before the other. When the motor shaft rotates clockwise (CW),
Channel A will lead (the edge will rise before) Channel B. When the motor spins counter clockwise (CCW)
Channel A will lag (rise after) Channel B. If there was only one sensor it would still be possible to measure
the number of rotations, but not to detect the direction of the motor.

@ On HD Hex and Core Hex motors Channel A leads Channel B when positive voltage is applied
to the M+ terminal. However, there are times when this will not hold true in real life. Different
reduction gearboxes, or physically swapping the Channel A and Channel B encoder wires into
the controller, can reverse the relationship between the channels. Keep this in mind when
programming and troubleshooting your robot.

When the encoder is being read by a microcontroller, the two signals are compared to produce a count up
pulse or count down pulse. These pulses are counted as steps forward (CW) or backwards (CCW). Using
the specifications for the encoder being used, a count can be converted to degrees. This information can be
used to drive a robot arm to a specific angle, or tell a robot to drive a certain distance. Both the Control Hub
and Expansion Hub communicate to a microcontroller through the encoder ports.

Encoder Technical Specification Definitions

@ There is some conflicting terminology difference between encoder suppliers. This document
defines one of the most commonly agreed upon set of terms, however be aware that when
comparing between encoder specifications from different vendor’s terms may vary in meaning.

Every time the output goes through all four distinct combinations of output signals, it's called a cycle (see a,
b, ¢, and d below). Encoders have a different cycles-pre-revolution(CPR) based on the number of poles on
the magnet used. The CPR is how many cycles are generated for one complete revolution of the encoder

shaft.
I - - 0 I

Encoder Cycle

An example output from one complete rotation of a 14 CPR encoder is shown in in the figure below. A 14
CPR rotation encoder may also be referred to as having 14 rises on channel A. Encoders are mounted to
the motor shaft, not the gearbox output shaft, so for a motor with a reduction gearbox attached this is less
than one full output shaft rotation.

Ny [pipipipigigigigigigigigigiyh
iy iyigipipipipiphpipipipipiyl

Figure 4: Encoder Output for one Revolution of a 14 CPR Encoder

One reason to use CPR to define an encoder, rather than the commonly used PPR (Pulses per Revolution)
is when the encoder signal is decoded by the microcontroller itis possible to do 1x, 2x, or 4x decoding. For
1x decoding the micro controller would only “count” the rising signal on a single channel, while for 4x
decoding each rising or falling edge for both channels is measured as a “count.” Although 4x decoding is
one of the most common methods, because it's based on how the electronics decode the signal from the
encoder, and not on the encoder hardware itself, it's not an ideal method of defining the encoder hardware
specifications.

If we assume 4x decoding when each cycle is interpreted, the microcontroller can read the four distinct
outputs (a, b, ¢, and d) as individual steps. So for each CPR, the controller can read four counts/ticks. To
calculate the number of counts per rotation of the encoder shaft:

COUNTSPERROTATION oftheencodershaft) = CPR(Cyclesperrotation) x 4

s P L L D - S D I) P S T TR T e Py TRy N PO - [D D S P | PN RO PRSP P R |

COUNTSPERROTATION oftheoutputshaft) = CPR(Cyclesperrotation) x 4 x Reduction

This can be calculated into the degrees per count. Assuming no additional reduction is added to the final
stage of the motor output (i.e. direct drive) the number of degrees per count is calculated as:

DEGREESPERCOUNT = 360°/COUNTSPERROT ATION oftheoutputshaft)

REV Motor Encoders

REV Robotics HD Hex Motors (REV-41-1291) and the Core Hex Motors (REV-41-1300) come with a
magnetic quadrature encoder already installed and an appropriate cable for connecting the encoder output
to the REV Robotics Control Hub (REV-31-1595) or Expansion Hub (REV-31-1153). See Table 1 and Table
2 for relevant encoder details.

Core Hex Motor (REV-41-1300) Encoder Specifications

Core Hex Motor (REV-41-1300) Reduction 72:1

Free Speed (RPM) 125

Cycles per Rotation of the Encoder Shaft 4 (1 Rise of Channel A)
Counts per Rotation of the Output Shaft 288 (72 Rises of Channel A)

HD Hex Motor (REV-41-1291) Encoder Specifications

HD Hex Motor

. Bare Motor 40:1 20:1
Reduction
Free Speed (RPM) 6000 150 300
Cycles per Rotation 28 (7 Rises of Channel 28 (7 Rises of Channel 28 (7 Rises of Chann
of the Encoder Shaft A) A) A)
Counts per Rotation 28 (7 Rises of Channel 1120 (280 Rises of 560 (140 Rises of
of the Output Shaft A) Channel A) Channel A)

Through Bore Encoder

https://www.revrobotics.com/rev-41-1301/
https://www.revrobotics.com/rev-41-1300/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

The REV Through Bore Encoder (REV-11-1271) is specifically designed with the end user in mind, allowing
teams to place the sensor in the locations closest to the rotation that they wish to measure. This rotary
sensor measures both relative and absolute position through its ABI quadrature output and its absolute
position pulse output.

@ The FTC Control System (Control Hub and Expansion Hub) only supports incremental encoder
input through the motor encoder ports at this time. Absolute pulse input is not supported.

Included with the Through Bore Encoder is a 5mm Hex insert and a 4-Pin JST PH to 6-pin JST PH
connector. The 6-pin connector is plugged into the Through Bore Encoder with the 4-pin connector plugging
into either the Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) Encoder Port. Both the A
and B channels of the encoder are used.

When using the 5mm Hex insert, press the insert into the 1/2” Hex hole before attaching to a mechanism. If
you are having difficulty pressing the insert into the encoder, try flipping the insert over and press itin. There
is a slight taper in the insert, so it is recommended to press the insert with the smaller end first. When
removing, itis recommended to push the insert out in the reverse order (larger end first).

For more information on the Through Bore Encoder check the Through Bore Encoder Datasheet.

Using 3rd Party Sensors

The Control Hub (REV-31-1595) and Expansion Hub (REV-31-1153) are 3.3V logic level devices. Many 3rd
party sensors, including ones that teams have previously purchased through vendors such as Modern
Robotics, are 5V logic level devices. Many of these legacy sensors are used with the REV system by using
a logic level converter. REV Robotics offers a Logic Level Converter (REV-31-1389) and an optional Sensor
Adapter Cable (REV-31-1384) so teams can more easily use their legacy sensors with the REV Control
System.

Wiring a Limit Switch or Micro Switch

Limit switches are common 3rd Party sensor type used with the REV Control System and require a custom
wiring harness. Each of the digital inputs on the Control and Expansion Hub have a pull-up resistor making
the digital inputs pulled "high" by default. Incorrect wiring of a limit switch to a digital input can create a
conflict making the Control or Expansion Hub unresponsive.

The recommended wiring is to connect the signal wire (n, n+1) to the common pin (COM), the ground wire to
the normally closed (NC) pin, and not connect to the normally open pin (NO) of the limit switch. With this
wiring when the switch is in its normal state (not pressed), the switch is closed connecting the signal to
ground (reporting FALSE in code). When pressed, the switch is open and disconnects the signal from
ground (reporting TRUE in code).

/\ The power wire and the unused signal wire will not be used in this set up process.

https://www.revrobotics.com/rev-11-1271/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://docs.revrobotics.com/through-bore-encoder/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/rev-31-1384/

]

L]
L]
L]
-

B
L

]

L]
L]
L]
-

B
L

NO

23 45 67

L]
L]
L]
-

B
£

@ If you need the opposite behavior (FALSE for pressed, and TRUE for not pressed) switch the
ground (black) wire to the NO position instead of NC. Alternatively changing the logic in code will
have a similar effect.

Logic Level Converter

The REV Robotics Logic Level Converter is a circuit board which generates a 5V output from the 3.3V input
and uses a MOSFET on each signal line to create a bidirectional communication appropriate for a variety of
digital signals include 12C communication. For more information on how bidirectional level shifting
communication is accomplished, please reference the NXP Application Note AN10441.

ChA/SDA 3.3V
X ChA/SDA

ChB/SCL
@ The Logic Level Converter is only needed for the Digital and 12C senor ports on the Control or
Expansion Hub when using a 5V device.

Connecting 5V Encoder

The Logic Level Converter (REV-31-1389) pinout directly matches the encoder cable pin out for FTC legal
3rd party motors. Encoder cables plug directly into the Logic Level Converter board and then the 4-pin JST
PH Cable (REV-31-1407), which is included with the Logic Level Converter, is plugged into the appropriate
Control Hub (REV-31-1595) Encoder Port. Motors which are terminated with Anderson Power Pole style
connectors use the JST VH to Anderson Power Pole Style (REV-31-1381) cable to connect to the motor
output port on the Control Hub.

JST VH to APP Control Hub
REV-31-1381 REV-31-1595

http://www.nxp.com/documents/application_note/AN10441.pdf
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/jst-ph-4-pin-sensor-cable-4-pack/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1381/

Motor with 5V Logic Level Converter
Encoder REV-31-1389

@ All REV Robotics Motors work directly with the REV Control and Expansion Hubs. No Logic
Level Converter is needed for REV Motors.

Connecting a 5V Sensor

A variety of 5V sensors are usable with the Control Hub (REV-31-1595) when used with a Logic Level
Converter (REV-31-1389). For some Modern Robotics I2C sensors a Logic Level Converter, and a change
in wiring to match the pinout of the Control Hub are needed. Teams can either purchase a Sensor Cable as
an add on to the Logic Level Converter Kit which will cross over the correct wires, or they can carefully
rearrange the pin order on the sensor cable. If using the Sensor Cable, connect the sensor to the Control
Hub as shown below. Itis recommended to zip tie the connection between the sensor and the sensor cable
to prevent accidental disconnects. See the Sensor Compatibility Chart for more information on hardware
required for other sensors.

Logic Level Converter
REV-31-1389

B

Sensor Cable
Legic Level Converter Add-On

Legacy |12C Device

Control Hub
REV-31-1595 o

Sensor Compatibility Chart

To determine if your existing sensors are used with the Control Hub (REV-31-1595) or Expansion Hub
(REV-31-1153) along with additional hardware needed, see the table below.

Sensor Compatibility Table

Sensor Type Compatible Adapters Needed

Absolute Orientation
IMU Fusion Breakout 3.3V Compatible
- BNOO055 12C Yes Custom Wiring

https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1389/
https://www.revrobotics.com/rev-31-1595/
https://www.revrobotics.com/rev-31-1153/

%\A(%?ru it

RGB Color Sensor
with IR filter and
White LED -
TCS34725

1334

AdaFruit

Color Sensor
45-2018
Modern Robotics

Compass
45-2003
Modern Robotics

Integrating Gyro
45-2005
Modern Robotics

IR Locator 360
45-2009
Modern Robotics

IR Seeker V3
45-2017

Modern Robotics

Ranger Sensor
45-2008
Modern Robotics

NeveRest Motor
AM-3461, AM-3102,
AM-2964a, AM-3103,
AM-3104

AndyMark

12C

12C

12C

12C

12C

12C

12C

Quad Encoder

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Harness Needed

3.3V Compatible
Custom Wiring
Harness Needed

= ==

Legac_y 12C Sensor Cable I

Device

= ==

Legacy 12C Sensor Cable l
Device

Legacy 12C ISensorCabIe I

Device

i

Legacy 12C Sensor Cable l

Device

i

T

Legacy 12C Sensor Cable l

Device

Legacy I12C ISensorCabIe I

Device

Motor w/ | |

Encoder

HD Hex Motor
REV-41-1301

REV Robotics

Core Hex Motor
REV-41-1301
REV Robotics

12v 4mm Motor Kit
50-0119
MATRIX

12v 6mm Motor Kit
50-0120
MATRIX

Standard Motor Kit
50-0001
MATRIX

Max Motor Shaft
Encoder Kit
W38000

Tetrix

Limit Switch
45-2401
Modern Robotics

Rate Gyro
45-2004
Modern Robotics

Optical Distance
Sensor
45-2006
Modern Robotics

Touch Sensor

Quad Encoder

Quad Encoder

Quad Encoder

Quad Encoder

Quad Encoder

Quad Encoder

Digital

Analog

Analog

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Directly Compatible
No Custom Adapters

Needed

Directly Compatible
No Custom Adapters
Needed

Motor w/ I

Encoder

Motor w/ |

Encoder

Motor w/ | |
Encoder
Motor w/ |
Encoder

No Adapter Needed

Custom Wiring
Harness Required.

Not Officially
Supported

Not Officially
Supported

No Adapter Needed

45-2007) Analog Yes Custom Wiring
Modern Robotics .
Harness Required

Light Sensor

Not Officially
45-2015 Analog No
) Supported
Modern Robotics
Magnetic Sensor .
Not Officially
45-2020 Analog No
Supported

Modern Robotics

Useful Links
Legacy Documentation

Configuring Your Android Devices

When using Android Phones as your Robot Controller and Driver Station devices, there are several steps
you need to take in order to get the phones up and running. This section will go through the process of
installing a Driver Station and Robot Controller application onto a phone using the REV Hardware Client, as
well as the process for renaming your Wi-Fi direct network.

@ For information on how to pair a configured Android phone with a Control Hub please see our
Driver Station Pairing to Control Hub article in the Getting Started with Control Hub section.

Installing the Driver Station Application

Android Developer Options

In order to install the Driver Station Application onto and Android phone, the phone's developer settings and
USB debugging options need to be turned on.

The developer options on Android Devices are hidden within the phone as a default. Different phone
manufactures have different ways of accessing the developer options. However, once the developer options
are available in the phone's settings, the steps for activating USB debugging and development settings are
similar.

‘ /\ Before moving forward it is advised to look up where the developer options on your Android

Device are located. For Motorola users, the Motorola Support Page has information on how to
unlock the developer options.

C®»0AN 3 Q@ .l i 947

Settings Q

Do not disturb is on (Alarms
only)

Cellular data is off

v Suggestions +1

ﬁ Set screen lock .
Protect your device

a Set Do Not Disturb schedule .
N Silence your device at certain times

Wireless & networks

' =] .
Open the Android Devices settings S

v Wi-Fi

Disconnected

< O O

https://motorola-global-portal.custhelp.com/app/answers/detail/a_id/160067/~/developer-options

CEmplAN

Settings

® System Update

@ Date & time

Scroll to the bottom of the settings, where the GMT.05:00 Central Daylight Time

unlocked developer options are available. Open

the developer options F Accessibility

— Printing

= 0 print jobs

{} Developer options
ol . q
LY Legal information

@ About phone
Android 7.1.1

< O O

Cm®0A 2 Q@ .l i@ 948

Developer options

Off

Take bug report

OEM unlocking

. . Allow the bootloader to be unlocked
At the top of the developer options page is an on/off

switch. Turn the developer options on. . .
Runnlng services
View and control currently running services

Picture color mode

< O O

The device will open a confirmation message.
Select'OK!'

Allow development settings?

These settings are intended for de-
velopment use only. They can cause
your device and the applications on
it to break or misbehave.

CANCEL OK

Scroll through the developer options until you find
the Debugging section. Turn USB Debugging on.

Em® 0 A 3 Q@ .l i 948

Developer options

On o

Debugging

USB debugging
Debug mode when USB is connected

Revoke USB debugging authorizations

Bug report shortcut

Show a button in the power menu for
taking a bug report

Select mock location app
No mock location app set

Enable view attribute inspection

Another confirmation message will appear, click
'OK.'

Allow USB debugging?

USB debugging is intended for
development purposes only. Use it
to copy data between your computer
and your device, install apps on your
device without notification, and read
log data.

CANCEL OK

USB debugging is now on! You can move on to the steps for installing the application.

Driver Station Application

@ The following steps will go through how to install the Driver Station Application via the REV
Hardware Client. It is possible to install the application via the app store or via the FTC GitHub
repository as well.

Connect the Android Device to a PC with the REV Hardware Client installed.

https://github.com/FIRST-Tech-Challenge/FtcRobotController
https://www.youtube.com/watch?v=wpE50vjXvdM
https://www.revrobotics.com/software/#REVHardwareClient

Startup the REV Hardware Client. Once the Android Device is fully connected it will show up on the front
page of the Ul under the Hardware Tab. Select the Android Device.

@ REV Hardware Client

Hardware Downloads About

Connected Hardware

Android Device
l ADB A

Last check: 4:29 pm

& Scan For Devices
Dont see your device?

@ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Under Driver Station App select
Download.

@ REV Hardware Client

Hardware Downloads About

Connected Hardware

Android Device

Last check: 4:29 pm Update Send Logs to REV

-

~ Robot Controller App

Current Version: Not currently installed
Latest Version: 5.5

Release Notes

~ Driver Station App

Current Version: Not currently installed
Latest Version: 5.5
Release Notes

Cancel Download

&7 Scan For Devices
Don't see your device? b

(@ Report an Issue -

Once the Driver Station App has downloaded, select Install.

@ REV Hardware Client

Hardware Downloads About

Connected Hardware

Android Device

Last check: 4:29 pm Update Send Logs to REV

-

~ Robot Controller App

Current Version: Not currently installed
Latest Version: 5.5

Release Notes

~ Driver Station App

Current Version: Not currently installed
Latest Version: 5.5
Release Motes

(Already Downloaded)

&7 Scan For Devices
Dot see your device? -

(@ Report an Issue -

When the application installation has completed the status for the Driver Station App will change to "Up-to-
Date."

@ REV Hardware Client

Hardware Downloads About

Connected Hardware o

Android Device (Driver Station) ADB

Last check: 4:29 pm Update Switch to Robot Controller Send Logs to REV

Android Device (Driver Station) ~ Driver Station App

Current Version: 5.5 Up-to-Date
Release Motes

ADB

&7 Scan For Devices

Don't see your device? - (D Report an Issue -

Renaming Your Smartphone

Part of the process for configuring your Android Device is changing the Wi-Fi Direct network. The intent of
this process is to give your Robot Controller and Driver Station phones an identifiable and unique network
name. This is a general best practice when working with networks, but is also a requirement for FIRST
programs.

@ FIRST has specific naming convention requirements for Robot Controllers and Driver Stations.
Please check your programs game manual for more information on what you need to name your
devices.

/\ Before moving forward it is advised to look up where the Wi-Fi direct options on your Android
Device are located. This guide goes over where to make this change on the Moto E5.

Locate settings in the application list for your
Android Device. Select the settings application

QO ® 1l 4 L 355

Q Search apps

29000 =

150009

1Weather Calculator Calendar ~ Camera Chrome

] (-} B 3:56

Q_ Search settings

Do not disturb is on (Alarms onl... +1 v

Network & Internet
Wi-Fi, mobile, data usage, hotspot

Connected devices
m Bluetooth, Cast

In the settings application, look for the Wi-Fi or
Network & Internet settings and select it. ::: Apps ¬ifications
*** Permissions, default apps
Note: the naming convention for the network g Batey
. . . . 28% - 1d 18h 46m left
settings will vary depending on device model and
manufacturer P Display

Wallpaper, sleep, font size

) Sound

Volume, vibration, Do Not Disturb

Storage
40% used - 9.62 GB free

o Security & location

< (@) O

In the network settings on Moto E5, scroll to the
bottom and look for Wi-Fi preferences. Select Wi-
Fi preferences.

Note: on other phone models Wi-Fi Direct settings
will likley be found in a different place. Please look
up the Wi-Fi direct information for your phone
model.

In Wi-Fi preferences select Advanced.

Select Wi-Fi Direct.

© \ & 356

Wi-Fi

N _a

il w
@ W\ B 357

Wi-Fi preferences

Open network notification
Notify when a high-quality public .
network is available

Advanced
Install certificates, Network rating provider,..

< (@) O
© N B 357
Wi-Fi preferences

Open network notification
Notify when a high-quality public .
network is available

Install certificates

Network rating provider
Google

Wi-Fi Direct

WPS Push Button

WPS Pin Entry

Passpoint™)

MAC address
38:80:df:7e:f5:ac

IP address
Unavailable

oM 0 N B 437

< Wi-Fi Direct SEARCHING...

Moto E(4)_64fd
Not visible to other non Wi-Fi Direct
devices.

Peer devices

DIRECT-2A-HP OfficeJet Pro

. . . 8720 =
In the Wi-Fi Direct settings select the three vertical Group Owner is available
dots in the upper right hand corner.
HL-L2350DW_BR4e4e =
Available e
HL-L8360CDW_BR3db0 =
Available e
MFC-L2750DW_BR8dde =
Available e
REV-Nick =
Group Owner is available Ta
L.V} A - 0N & 437
< Wi-Fi Direr | Configure device
Moto E(4)_6:
Not visible to other non Wi-FI Direct
devices.
Peer devices
DIRECT-2A-HP OfficeJet Pro
8720 =
Group Owner is available
HL-L2350DW_BR4e4e =
- - . -
Select Configure device. Available va
HL-L8360CDW_BR3db0 =
" -
Available va
MFC-L2750DW_BR8dde =
Available e
REV-Nick o
e

Group Owner is available

Change the name of your device to something
unique and identifiable. For this example the

device has been renamed to REVDemo_DS. Itis
also good to check the Wi-Fi Direct Inactivity
timeout and confirm it is set to Never disconnect.
Hit 'save' to confirm your changes.

Rename device

REVDemo_DS
Note: If you are competing in robotics competitions Limit number of Wi-Fi Direct devices to
P . . improve performance
you may need to follow a Wi-Fi Direct naming 8 Devices

convention set by the competition rules. Check any Wi-Fi Direct Inactivity timeout
relative documentation to confirm that you are
following the correct naming convention.

Never disconnect v

D Auto connect remembered Wi-Fi Direct
groups

CANCEL SAVE

Expansion Hub with Android Device Robot Controller

After receiving the Expansion Hub it is advised to unbox the device, power the Expansion Hub on, and start
the configuration process. Below are the required materials to run through the initial bring up of the
Expansion Hub and links to the different steps of the process.

Required Materials

e Expansion Hub (REV-31-1153)

12v Slim Battery (REV-31-1302)

Properly Configured Driver Station (DS)

Properly Configured Robot Controller (RC)

Etpark Wired Controller for PS4 (REV-39-1865)

USB A Female to Micro USB (REV-31-1807)

Optional Additional Materials needed to Connect an Expansion Hub:

e Expansion Hub (REV-31-1153)
e XT30 Extension Cable (REV-31-1392)
e JST PH 3-pin Communication Cable (REV-31-1417)

Driver Station and Robot Controller Pairing

When you first receive your Expansion Hub, you will have to install the Driver Station and Robot Controller
Applications and pair (link) your Driver Station (Android Device) to your Robot Controller. The following

https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/rev-31-1302/
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices
https://github.com/FIRST-Tech-Challenge/SKYSTONE/wiki/Configuring-Your-Android-Devices
https://www.revrobotics.com/rev-39-1865/
https://www.revrobotics.com/rev-31-1807/
https://www.revrobotics.com/rev-31-1153/
https://www.revrobotics.com/xt30-extension-cable-2-pack/
https://www.revrobotics.com/jst-ph-3-pin-communication-cable-2-pack/

sections of the page will walk through how to install the applications and how to connect the Driver Station
to the Robot Controller's Network.

Install Applications

Android Developer Options

In order to install the Driver Station Application or Robot Controller Application onto and Android phone, the
phone's developer settings and USB debugging options need to be turned on.

The developer options on Android Devices are hidden within the phone as a default. Different phone
manufactures will have different ways of accessing the developer options. However, once the developer
options are available in the phone's settings, the steps for activating USB debugging and development
settings are similar.

/\ Before moving forward it is advised to look up where the developer options on your Android
Device are located. For Motorolla users, the Motorolla Support Page has information on how to
unlock the developer options.

C®0AN

Settings

e Do not disturb is on (Alarms
only)

a Cellular data is off

v Suggestions +1

& Set screen lock .
Protect your device

'y Set Do Not Disturb schedule .
- Silence your device at certain times

Wireless & networks

Y, WiFicalling

' Wi-Fi
Open the Android Devices settings Bl cehl G

< (@) O

Scroll to the bottom of the settings, where the
unlocked developer options are available. Open
the developer options

Cmm0AN

Settings
® System Update
@ Date & time
GMT-05:00 Central Daylight Time
T Accessibility
- Printing
0 print jobs
{1} Developer options
5% Legal information
® About phone
Android 7.1.1

] O

Cm®0aA 2 Q@ .l i@ 948

Developer options

Off

Take bug report

OEM unlocking
Allow the bootloader to be unlocked

Running services
View and control currently running services

At the top of the developer options page is an on/off
switch. Turn the developer options on. Picture color mode

< O O

The device will open a confirmation message.
Select'OK.'

Allow development settings?

These settings are intended for de-
velopment use only. They can cause
your device and the applications on
it to break or misbehave.

CANCEL OK

Scroll through the developer options until you find
the Debugging section. Turn USB Debugging on.

Em® 0 A 3 Q@ .l i 948

Developer options

On o

Debugging

USB debugging
Debug mode when USB is connected

Revoke USB debugging authorizations

Bug report shortcut

Show a button in the power menu for
taking a bug report

Select mock location app
No mock location app set

Enable view attribute inspection

Another confirmation message will appear, click

'OK.'

Allow USB debugging?

USB debugging is intended for
development purposes only. Use it
to copy data between your computer
and your device, install apps on your

device without notification, and read
log data.

CANCEL OK

USB debugging is now on! You can move on to the steps for installing the application.

Driver Station Application

@ The following steps will go through how to install the Driver Station Application via the REV
Hardware Client. It is possible to install the application via the app store or via the FTC GitHub
repository as well.

Connect the Android Device to a PC with the REV Hardware Client installed.

Startup the REV Hardware Client. Once the Android Device is fully connected it will show up on the front
page of the Ul under the Hardware Tab. Select the Android Device.

Connected Hardware

Android Device

Last check: 4:29 pm

&7 Scan For Devices

Don't see your device? @ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Under Driver Station App select
Download.

{5} REV Hardware Client - O >

Hardware Downloads About

Connected Hardware Android Device

Last check: 4:29 pm Update Send Logs to REV

e

v Robot Controller App

Current Version: Not currently installed
Latest Version: 5.5

Release Notes

~ Driver Station App

Current Version: Not currently installed
Latest Version: 5.5
Release Notes

—

Cancel Download

& Scan For Devices
Don't see your device? b

@ Report an Issue -

Once the Driver Station App has downloaded, select Install.

{5} REV Hardware Client - O hod

Hardware Downloads About

Connected Hardware Android Device

Last check: 429 pm Update Send Logs to REV

Android Device

ADB

& Scan For Devices
Dont see your device?

s

v~ Robot Controller App

Current Version: Not currently installed
Latest Version: 5.5

Release Notes

~ Driver Station App

Current Version: Not currently installed
Latest Version: 5.5
Release MNotes

(Already Downloaded)

@ Report an Issue -

When the application installation has completed the status for the Robot Controller App will change to "Up-

to-Date."

@ REV Hardware Client

Hardware Downloads About

Connected Hardware

Last check: 4:29 pm

Android Device (Driver Station)

ADB

& Scan For Devices
Dont see your device?

(<] Android Device (Driver Station) ADB

Update Switch to Robot Controller

v Driver Station App

Current Version: 5.5 Up-to-Date
Release Notes

@ Report an Issue -

Robot Controller Application

@ The following steps will go through how to install the Robot Controller Application via the REV

Hardware Client. Itis possible to install the application via the app store or via the FTC GitHub
repository as well.

Connect the Android Device to a PC with the REV Hardware Client installed.

Startup the REV Hardware Client. Once the Android Device is fully connected it will show up on the front
page of the Ul under the Hardware Tab. Select the Android Device.

&) REV Hardware Client — O s

Hardware Downloads About

Connected Hardware

Android Device
‘ l ADB A ‘

Last check: 4:29 pm

& Scan For Devices

Dont see your device? @ Report an Issue

After selecting the Connected Hardware the Update tab will pop up. Under Robot Controller App select
Download.

@ REV Hardware Client

Hardware Downloads About

Connected Hardware Android Device

-

Last check: 4:29 pm

v Rohot Controller Ann

https://github.com/FIRST-Tech-Challenge/FtcRobotController

&7 Scan For Devices
Don't see your device?

e e

Current Version: Not currently installed
Latest Version: 5.5
Release Notes

~ Driver Station App

Current Version: Not currently installed
Latest Version: 5.5
Release Notes

(@ Report an Issue -

Once the Robot Controller App has downloaded, select Install.

@ REV Hardware Client

Hardware Downloads About

Connected Hardware

Last check: 4:29 pm

Android Device

ADB

& Scan For Devices
Don't see your device?

Android Device

-

~ Robot Controller App

Current Version: Not currently installed
Latest Version: 5.5

Release Notes

(Already Downloaded)

~ Driver Station App

Current Version: Not currently installed
Latest Version: 5.5
Release Notes

@ Report an Issus N

When the application installation has completed the status for the Robot Controller App will change to "Up-

to-Date."

REV Hardware Client

Hardware Downloads About

Connected Hardware

Android Device (Robot Controller) ADB ®

= »]mY,
Last check: 9:52 am Update switch to Driver Station Send]

Android Device (Robot Controller) v Robot Controller App
. ADB Current Version: 5.5 Up-to-Date
Release Notes

& Scan For Devices

. ice?
Don't see your device? @ Reportan Issue

Driver Station and Robot Controller Pairing

@ You should update your Driver Station(DS) and Robot Controller(RC) phones to the latest app
version in order to use the Expansion Hub controller. The minimum compatible version is 3.1
released on May 10th, 2017

Please ensure that the Driver Station and Robot Controller phones are properly configured and paired.
Refer to the latest pairing and troubleshooting instructions provided by in the FTC Control System Wiki.

Wiring Diagram

System Wiring Diagram

Before configuring your Expansion Hub, devices must be connected to the Expansion Hub. Below is a
sample wiring diagram to show a sample of actuators and sensors usable with the Expansion Hub.

Expansion Hub
REV-31-1153

Color-Distance Sensor
REV-31-1154

S_Ilm @O‘H‘ery el AT,

https://github.com/ftctechnh/ftc_app/wiki

REV-31-1302

[I T |

Core Hex Motor
REV-41-1300

Potentiometer
REV-31-1155

Smart Robot Servo
Hex Motor REV-41-1097
EV-41-130]

Configuration

Every device connected to the Expansion Hub (REV-31-1153) will need to be added to the Robot
Configuration file before you can use the device in your program. The Robot Configuration will allow you to
give your sensors and actuators meaningful names that you can reference while programming.

For this example, we will configure a simple two motor robot drivetrain.

Step Image

Moto E (4)_3b31

3.0%

Settings

Restart Robot
Configure Robot
Program & Manage

_)) Self Inspect
Select the menu on either the Driver Station or

Robot Controller. Then select “Configure Robot”. About

Exit

https://www.revrobotics.com/rev-31-1153/

Select “New” in the top left hand corner.

Select “Expansion Hub Portal 1” (embedded).

Select “Expansion Hub 1”.

Select “Motors”.

Select the Drop Down menu for “Port 0” then select
the motor type attached to the port. In the case of
the Minibot in Figure 4, select the “Rev Robotics
Core Hex Motor”.

Fwailable corfiguralions;

HoConfigurazions Found.
I OGer 10 Proeeed, yOU Msst oreabe o rew configaration

Fress the Sawe’ button 1o persistently savwe the current condouration
Prass the Sman bisthon to rescan for attached devioes

UEE Devices in configuration:

Expansion Hub Pertal 1 <:|
{embeciced)

Expansion Hub Fortal 1

fembeciced)

ExpansionHub 1 <’::|

Expansion Hub 1

= —

SEvas

Dagital Devices
P Devices
Analog Input Devices
IZCBus 0

12C Bus 1

120G Bus 2

120 Bus 3

Fort At

0 = ..:___h__-"’”‘_:—|
A M
1
Nathig -
Wi e
2
IRty -
Ml sarre
3

Press “Enter motor name here” and name the motor

“‘Ilﬁlrtspsr%%"name that you will use when you are
programming your robot to control this motor.
Always use descriptive names so that you can
remember what a device does when you are
programming.

Repeat the process for “Port 1” and name the motor
“right_drive”.

Press “Done” once to go back to the list of device
ports and then select 12C Bus 0.

Fart Atisched

0

REV Robertics HO Hex Motor -

) Enter motor nam hane -i:::l

RSO Rame
1
athing -
RO name
2
Matiiing -

Fort Atiached

0

REV Robotics Core Hex Motor +

I ft_deive

RSO Rame

REV Robotics Core Hex Motor =

righv_drive

RO name

Mathing -

RO name

Kathing -

BASROT B

Acti figuration: (unsaved) servos

Cancel

Expansion Hub 1

Motors

Servos

Digital Devices

PWM Devices
Analog Input Devices
12C Bus 0

12CBus 1

12C Bus 2

12C Bus 3

Active Configuration (unsaved) servos

Port Attached

‘ REV Expansion Hub MU~ + ‘

jmu

Device name

Add the built-in REV Expansion Hub IMU. Name it
Himu”

Press the “Done” button (at the top left corner of the
page) 3 times.

Agdee Conauralion

Press the Eave’ butlon to persistently save the current configuration

“ ”
PreSS Save . Press the Sman budlon to nescan for attached devipes
USE Devices in configuration: 0

Expansion Hub Portal 1

fembecded)

Enter “miniBot” as your configuration name, then Save Configuration

select “OK”". Please antar 3 nama for the rebot canfiguration,

miniBat]

o < —]

You now have an active configuration called

“miniBot”. Press the Android back button to return to
the Driver Station page. e

rririBat

REV Hub Interface Software

The REV Hub Interface is a beta software allowing for a direct connection from a REV Expansion Hub and
its peripherals to a Windows PC.

This interface provides a method for teams to prototype with motors, servos, and sensors in a way that is
faster and easier than setting up an entire robot control system. Itis also a valuable troubleshooting tool that
can help isolate the cause of an issue and determine ifitis electrical or software related. The REV Hub
Firmware can also be updated and recovered through this interface in addition to the Robot Controller
Application.

Download the Latest Hub Interface Software - Version 1.2.0

@ The REV Hub Interface Software only works with the REV Expansion Hub and not the REV
Control Hub

System Requirements

e Operating System: Windows 7 or newer*

e Processor: 64-bit

e RAM: Yes

@ The newest versions of Windows should automatically install the required USB drivers.
Alternatively, you can download the latest drivers from the FTDI VCP website.

Installation Instructions

1. Download the Hub Interface software installer above.
2. Run the installer.

3. Run the REV Hub Interface Software from the Windows Start Menu or the desktop shortcut

Connecting and Controlling an Expansion Hub

https://www.revrobotics.com/content/sw/REVHubInterface-1.2.0.exe
https://www.ftdichip.com/Drivers/VCP.htm

1. connect your Expansion Hub to the computer with a USB A to USB Mini-B cable.
2. Run the REV Hub Interface Software.

3. The software will scan and connect to the Expansion Hub. The various peripheral tabs will populate
with controls once connected.

@ Some peripherals, such as DC Motors and Servo Motors, require a battery to be connected to the
Expansion Hub in order to operate through the REV Hub Interface.

Alternative Installation Method

You may also download the following zip file if you would rather unzip the application in a directory of your
choice. This method shouldn't require administrator privileges.

REV Hub Interface Software Zip File

LATEST HUB INTERFACE SOFTWARE CHANGE LOG - VERSION 1.2.0

¢ Display encoder values on 'DC motors' tab.

e Added support for REV Color Sensor V3.

e Display proximity values along with RGBC for REV color sensors.
e Display REV Hub Interface version on the 'Firmware' tab.

e Changed behavior of INIT' and 'POLL' buttons on '12C'. User can no longer poll a device until it has
been successfully initialized.

e Added ability to set LED pattern.
e Bug fix where 'POLL" had to be pressed twice to read values from the IMU.

e Bug fix where status LED would continue to flash blue the second time REV Hub Interface is connected.

e Allow user to press enter key to update motor/servo values.

e Fixed gyro labels on IMU tab and corrected units for linear acceleration.

https://www.revrobotics.com/content/sw/REVHubInterface-1.2.0.zip

